DAYANANDA SAGAR COLLEGE OF ENGINEERING Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078 Department of Mathematics Question Bank for IT(EC, TC, EE, ML, EI, IS) Unit 2: Complex Variable

Unit 2: Complex Variable		
Q.No	Question	
1.	a) Find the modulus and amplitude of $\frac{(1+i)^2}{(3+i)}$.	
	b) Define the neighborhood of a complex variable with Geometrical interpolation.	
2.	 a) Determine the region in the z-plane represented by i) 1< z + 2i ≤ 3 ii) R(z) >3 iii) π/6 ≤ amp (z) ≤ π/3 b) Define the following : i) Limit of a complex function ii) Continuity of a complex function iii) Differentiability of a complex function 	
3.	 a) If f(z) = u + iv is analytic, then prove that Cauchy- Riemann equations u_x = v_y, v_x = -u_y are true. b) If f(z) = u(r, θ) + i v(r, θ) is analytic, then prove that Cauchy- Riemann equations in polar form ^{∂u}/_{∂r} = ¹/_r ^{∂v}/_{∂θ} and ^{∂v}/_{∂r} = -¹/_r ^{∂u}/_{∂θ} are true. a) If u = x² - y², v = x³ - 3xy² Show that u and v are harmonic functions but f(z) = u + 	
4.	 a) If u = x² - y², v = x³ - 3xy² Show that u and v are harmonic functions but f(z) = u + iv is not analytic. b) If u = x²/y, y ≠ 0 and v = x² + 2y², then show that the curve u = constant and v = constant are orthogonal but f(z) = u + iv is not an analytic function. 	
5.	a) Show that $f(z) = z^n$ is analytic. Hence find its derivative. b) Show that the function $f(z) = logz$ is analytic and hence find its derivative.	
6.	a) Show that the function $f(z) = coshz$ is analytic and hence find its derivative. b) Show that $w = z + e^z$ is analytic and hence find $\frac{dw}{dz}$.	
7.	a) Show that the function $f(z) = sin2z$ is analytic and hence find its derivative. b) Find the analytic function $f(z) = u + iv$, where $u = x^2 - y^2 + \frac{x}{x^2 + y^2}$	
8.	a) Find the analytic function whose real part is $log\sqrt{x^2 + y^2}$. b) Find the analytic function $f(z) = u + iv$, where $v = \frac{y}{x^2 + y^2}$.	
9.	 a) Find the analytic function f(z) = u + iv, where v = e^x(xsiny + ycosy) using Milne Thompson method. b) Find the analytic function f(z) = u + iv, where u = e^{-x}{(x² - y²)cosy + 2xysiny} using Milne Thompson method. 	
10.	 a) Find the analytic function f(z) = u(r,θ) + iv(r,θ), where v(r,θ) = r²cos2θ - rcosθ + 2 using Milne Thompson method. b) Find the analytic function f(z) = u(r,θ) + iv(r,θ), where u(r,θ) = cos2θ/r² using Milne Thompson method. 	
11.	a) Find the analytic function $f(z) = u + iv$, where $v = -\frac{\sin\theta}{r}$ using Milne Thompson method. b) Find the analytic function $f(z) = u + iv$, where $u = r^2 \cos 2\theta$	
12.	a) Show that $u = e^{2x}(x\cos 2y - y\sin 2y)$ is harmonic and find its harmonic conjugate.	

	b) Show that $u = e^x cosy + xy$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
13.	a) Show that $v = cosx sinhy$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
	b) Show that $u = x^3 - 3xy^2 - 3x^2 + 3y^2 + 1$ is harmonic and find its harmonic conjugate.
14.	a) Show that $u = \left(r + \frac{1}{r}\right) \cos\theta$ is harmonic and find its harmonic conjugate.
	b) Show that $v = \left(r - \frac{1}{r}\right) sin\theta$ is harmonic and find its harmonic conjugate.
15.	a) Show that $v = rsin\theta + \frac{cos\theta}{r}$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
	b) Show that $u = \frac{\cos\theta}{r}$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
16.	a) Show that $u = x^2 + 4x - y^2 + 2y$ is harmonic and find its harmonic conjugate and also find
	the corresponding analytic function.
	b) Show that $v = 2xy - 2x + 4y$ is harmonic and find its harmonic conjugate and also find the corresponding analytic function.
17.	a) Find the analytic function $f(z) = u + iv$ if $u + v = \frac{1}{r^2}(\cos 2\theta - \sin 2\theta)$ $(r \neq 0)$.
	b) Find the analytic function $f(z) = u + iv$ if $u + v = r(\cos\theta + \sin\theta) + \frac{1}{r}(\cos\theta - \sin\theta)$
18.	a) Find the analytic function $f(z) = u + iv$ if $u + v = (x + y) + e^{x}(cosy + siny)$.
	b) Find the analytic function $f(z)$ as a function of z gives the sum of its real and imaginary part is $x^3 - y^3 + 3xy(x - y)$.
19.	a) Find the analytic function $f(z) = u + iv$ if $u - v = (x - y)(x^2 + 4xy + y^2)$
20.	b) Find the analytic function $f(z) = u + iv$ if $u - v = e^x(cosy - siny)$ a) An electrostatic field in the xy-plane is given by the potential function $\emptyset = 3x^2y - y^3$, find the
	stream function.
	b) Two concentric circular cylinders of radii r_1, r_2 ($r_1 < r_2$) are kept at potentials \emptyset_1 and \emptyset_2
	respectively. Using complex function $\omega = alog z + c$, prove that the capacitance per unit length of
	the capacitor formed by them is $\frac{2\pi\lambda}{\log(r_2 r_1)}$ where λ is the dielectric constant of the medium.