

DEPARTMENT
OF

ELECTRONICS & COMMUNICATION ENGG

MICRO CONTROLLER LAB MANUAL

C LAB

IV Semester (17EC4DLMCR)
Autonomous Course

2018-19

Name of the Student :

Semester /Section :

USN :

Batch :

Dayananda Sagar College of Engineering

Shavige Malleshwara Hills, Kumaraswamy Layout,
Banashankari, Bangalore-560078, Karnataka

Tel : +91 80 26662226 26661104 Extn : 2731 Fax : +90 80 2666 0789
Web - http://www.dayanandasagar.edu Email : hod-ece@dayanandasagar.edu

(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by NBA, National Assessment & Accreditation Council (NAAC) with 'A' grade)

1

DEPARTMENT
OF

ELECTRONICS & COMMUNICATION ENGINEERING

MICROCONTROLLER LAB MANUAL

IV Semester (17EC4DLMCR)

Autonomous Course

2018-2019

Dr. T.C. Manjunath & Dr. M. Roopa
Vibha T.G.,Mahima U,Chaitra A

H.S. Veena,Nutesh S

Name of the Student :

Semester /Section :

USN :

Batch :

Dayananda Sagar College of Engineering

Shavige Malleshwara Hills, Kumaraswamy Layout,

Banashankari, Bangalore-560078, Karnataka
Tel : +91 80 26662226 26661104 Extn : 2731 Fax : +90 80 2666 0789

Web - http://www.dayanandasagar.edu Email : hod-ece@dayanandasagar.edu
(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)

(Accredited by NBA, National Assessment & Accreditation Council (NAAC) with 'A' grade)

2

Dayananda Sagar College of Engineering

Dept. of E & C Engg

Name of the Laboratory :Microcontroller Lab / 17EC4DLMCR

Semester/Year : IV/2018-2019 (Autonomous)

No. of Students/Batch : 20

No. of Computers : 30

Major Equipment’s : Dell Computers
Microcontroller Board
DSP TMS320 Kit
Dc Motor Interface
Elevator Interface
Dual DAC interface
Stepper Motor Interface
Logic Controller Interface
Digital Oscilloscope

 Power Supply
±5v, ±12v, ± 30v

Operating System & : Windows 8.1, UPS
Application Keil Micro Vision,

 Hardware C interfacing kits
Matlab 2014, CC Studio-V

Area in square meters : 104 Sq mts

Location : Level – 3

Total Cost of Lab : Rs. 15,00,000/-

Lab Incharge/s: Dr. Prof. M. Roopa

 Prof. Vibha T.G.

 Prof. Mahima U

 Prof. Chaitra A

Instructor : Mrs. H.S. Veena, Mr Nuthesh

HOD : Dr. T.C. Manjunath, Ph.D. (IIT Bombay)

3

About the college & the department

The Dayananda Sagar College of Engineering was established in

1979, was founded by Sri R. Dayananda Sagar and is run by the

Mahatma Gandhi Vidya Peetha Trust (MGVP). The college offers

undergraduate, post-graduates and doctoral programmes under

Visvesvaraya Technological University & is currently autonomous

institution. MGVP Trust is an educational trust and was promoted

by Late. Shri. R. Dayananda Sagar in 1960. The Trust manages 28

educational institutions in the name of “Dayananda Sagar

Institutions” (DSI) and multi – Specialty hospitals in the name of

Sagar Hospitals - Bangalore, India. Dayananda Sagar College of

Engineering is approved by All India Council for Technical

Education (AICTE), Govt. of India and affiliated to Visvesvaraya

Technological University. It has widest choice of engineering

branches having 16 Under Graduate courses & 17 Post Graduate

courses. In addition, it has 21 Research Centres in different

branches of Engineering catering to research scholars for

obtaining Ph.D under VTU. Various courses are accredited by NBA

& the college has a NAAC with ISO certification. One of the vibrant

& oldest dept is the ECE dept. & is the biggest in the DSI group

with 70 staffs & 1200+ students with 10 Ph.D.’s & 30+ staffs

pursuing their research in various universities. At present, the

department runs a UG course (BE) with an intake of 240 & 2 PG

courses (M.Tech.), viz., VLSI Design Embedded Systems & Digital

Electronics & Communications with an intake of 18 students each.

The department has got an excellent infrastructure of 10

sophisticated labs & dozen class room, R & D centre, etc…

4

Vision and Mission of the Institute:
Vision:

 To impart quality technical education with a focus on Research and

Innovation emphasizing on Development of Sustainable and Inclusive

Technology for the benefit of society.

Mission:

 To provide an environment that enhances creativity and Innovation in

pursuit of Excellence.

 To nurture teamwork in order to transform individuals as responsible

leaders and entrepreneurs.

 To train the students to the changing technical scenario and make them

to understand the importance of sustainable and inclusive

technologies.

Vision and Mission of the Department
Vision :

 To achieve continuous improvement in quality technical education for

global competence with focus on industry, societal needs, research and

professional success.

Mission:

 Offering quality education in Electronics and Communication

Engineering with effective teaching learning process in

multidisciplinary environment.

 Training the students to take-up projects in emerging technologies and

work with team spirit.

 To imbibe professional ethics, development of skills and research

culture for better placement opportunities.

5

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

After four years, the students will be

PEO1 : ready to apply the state-of-art technology in industry and meeting the

societal needs with knowledge of Electronics and Communication

Engineering due to strong academic culture.

PEO2 : competent in technical and soft skills to be employed with capability

of working in multidisciplinary domains.

PEO3 : professionals, capable of pursuing higher studies in technical,

research or management programs.

PROGRAM SPECIFIC OBJECTIVES (PSOs):

Students will be able to

PSO1 : Design, develop and integrate electronic circuits and systems using

current practices and standards.

PSO2 : Apply knowledge of hardware and software in designing Embedded

and Communication systems.

Course Objectives

1. To provide knowledge on fundamental concepts of 8051.

2. To provide understanding of assembly language programming concepts and improve the

programming skill.

3. To familiarize students with Kiel software.

4. To familiarize students with different sets of instructions available for programming.

5. To give exposure on interfacing concepts using C language with different peripherals.

6. To provide foundation for developing 8051 based applications.

6

Course Outcomes

After the completion of this laboratory the students will have the ability to ….

CO1
Employ the knowledge of 8051 architecture & memory organization, for writing

assembly language programs using Kiel software.

CO2
Apply the assembly language programming skills to build ALPs for arithmetic

& logical operations.

CO3 Analyze & code for timers, serial communication & interrupts.

CO4 Use hardware kit and various peripherals to analyze hardware interfacing.

CO5
Apply embedded C programming skills to develop programs for hardware

interfacing.

CO6
Demonstrate simulated hardware programs on 8051 kit interfaced with various

peripherals.

Mapping of Course outcomes to Program outcomes

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1 3 2 1 - - - - - 1 1 - - - -

CO2 3 2 1 - - - - - 1 1 - - - -

CO3 3 2 1 - - - - - 1 1 - - - -

CO4 3 2 - - - - - - 1 1 - - - -

CO5 3 3 2 1 1 - - - 1 1 - - - 1

CO6 3 3 2 1 1 - - - 1 1 - - - 1

CO

AVG
3 2 1 1 1 - - - 1 1 - -

- 1

7

MICRO-CONTROLLER LAB

Course code : 17EC4DLMCR
 Credits: 2

L : P : T : S : 1 : 2 : 0 : 0 CIE Marks: 50

Exam Hours : 3 SEE Marks: 50

Expt Course Content Hours COs

Software Programs : ALP simulation programs on 8051

1.

Data Transfer Programs – 8051 :

a. Block data transfer without overlap

b. Block exchange.

03
C01

C02

2.

Arithmetic operation :

a. Addition, subtraction, multiplication and

 division of two 8 bit numbers.

b. Bubble Sorting algorithm.

03
C01
C02

3.

Bit manipulation, Boolean & Logical Instructions

programs :

a. To perform logical operation on two 8 bit

 numbers.

b. Conditional bitwise logical operations.

03
C01

C02

4.

Counters :

a. BCD counter using software delay.

b. Hex counter using timer delay of 1 sec.

03

C01

C02
CO3

5.

Conversion: 8051

a. HEX– Decimal

b. Decimal – HEX

03
C01

C02

6.
Serial data transmission with variable baud rate –

8051.
03

C01
C02
CO3

8

Hardware programs to interface 8051 chip to Interfacing modules

7.
Implementation of DAC 0808 interface to 8051 to

generate square, triangular, ramp waveforms.
03

C04
C05
C06

8. Stepper motor interface to 8051. 03
C04
C05

C06

9. DC motor interface to 8051. 03
C04

C05
C06

10. Alphanumeric LCD panel interface to 8051. 03
C04
C05
C06

11. Elevator interface to 8051. 03
C04
C05

C06

9

Cycle of experiments

 No. Title
Page
No

CYCLE - 1

ALP programs on 8051

1 Data Transfer Programs – 8051. 27

2 Arithmetic operation. 32

3
Bit manipulation, Boolean & Logical Instructions
programs.

37

4 Counters programs. 41

5 Conversion. 46

6 Serial data transmission with variable baud rate – 8051. 49

CYCLE - 2

C programs to interface 8051 chip to Interfacing
modules

7
Implementation of DAC 0808 interface to 8051 to generate
square, triangular, ramp waveforms.

54

8 Stepper motor interface to 8051. 61

9 DC motor interface to 8051. 66

10 Alphanumeric LCD panel interface to 8051. 69

11 Elevator interface to 8051. 73

10

DO’s

 All the students should come to LAB on time with proper dress code and

identity cards.

 Keep your belongings in the corner of laboratory.

 Students have to enter their name, USN, time-in/out and signature in the

log register maintained in the laboratory.

 All the students should submit their records before the commencement of

Laboratory experiments.

 Students should come to the lab well prepared for the experiments which

are to be performed in that particular session.

 Students are asked to do the experiments on their own and should not

waste their precious time by talking, roaming and sitting idle in the labs.

 Observation book and record book should be complete in all respects and

it should be corrected by the staff member.

 Before leaving the laboratory students should arrange their chairs and

leave in orderly manner after completion of their scheduled time.

 Prior permission to be taken, if for some reasons, they cannot attend lab.

 Immediately report any sparks/ accidents/ injuries/ any other untoward

incident to the faculty /instructor.

 Once the experiment is completed in all respects, students should take

the sign of the staff / lab incharge & before coming to the next lab, the

practical record should be written & complete in all respects, else, marks

will be reduced as the record will be incomplete.

 In case of an emergency or accident, follow the safety procedure.

 Switch OFF the power supply after completion of experiment.

11

DONT’s

 Do not make noise in the Laboratory & do not sit on experiment table.

 Do not make loose connections and avoid overlapping of wires

 Don’t switch on power supply without prior permission from the

concerned staff.

 Never leave the experiments while in progress.

 Do not leave the Laboratory without the signature of the concerned staff

in observation book.

 Do not switch on the power supply before verification of the connected

circuits by concerned staff.

 Do not feed higher voltages than rated to the device.

 Do not upload, delete or alter any software on the laboratory PC’s.

 Do not write or mark on the equipment’s.

 Usage of mobile phone is strictly prohibited.

 Ragging is punishable.

 If student damages the equipment or any of the component in the lab,

then he / she is solely responsible for replacing that entire amount of the

equipment or else, replace the equipment.

12

INTRODUCTION

TO

MICRO-CONTROLLER

&

ITS ARCHITECTURE

INSTRUCTION SETS

:

13

BREIF INTRODUCTION ABOUT THE 8051 MICRO-CONTROLLER

8051 Architecture:

Architecture shows usual CPU components such as Program counter (PC),

ALU, working registers and clock circuits.

Features:

• 8 bit CPU with registers A (Accumulator) & B

• 16 bit program counter (PC) and Data pointer (DPTR).

• 8 bit Program status word (PSW).

• 8 bit stack pointer.

• Internal ROM of 4kbytes.

• Internal RAM of 128 bytes.

• 4 register banks each containing 8 registers.

• 16 bytes of bit addressable registers.

• 8 bytes of general purpose data memory.

• 32 I/O pins arranged in four 8 pin ports (P0 to P3).

• Two 16 bit Timer/Counter (T0 & T1).

• Full duplex serial data receiver / transmitter (SBUF).

14

• Control registers, TCON, TMOD, SCON, PCON, IP & IE.

• 2 external & 3 internal interrupt source.

• Oscillator and clock circuits.

DIP pin assignments:

It is a 40 pin IC, where 32 pins are used for 4 ports, P0,P1,P2,P3 (each of 8

pins). The rest of the pins are Vcc, Gnd,XTAL1, XTAL2, RST, EA (Low enable),

PSEN (Lew enable) & ALE.

Port 0: It is 8 pins (32 to 39) port which can be used as input or output. To

use it as both I/O pins, each pin must be connected externally to 10k-ohm

pull up resistor as these pins are open drain unlike other ports. 8051

multiplexes address and data through port0 to save pins hence this port can

be used as both address and data port (Ad0-AD7).

15

Port 1: 8 pins (1 to 8) port with internal pull up resistors. On reset it is

configured as input port (all pins 1).

Port 2: 8 pins (21 to 28) port with internal pull up resistors. On reset it is

configured as input port (all pins 1). This port is used as address pins while

interfacing external memory of 64kB. P0 provides lower 8 bit address and P2

provides higher 8 bits of address but P2 is not multiplexed.

Port 3: 8 pins (10 to 17) port with internal pull up resistors. On reset it is

configured as input port (all pins 1). P3 has the additional function of

providing some important signals such as interrupts as shown in pin diagram.

Pin 18 & 19: External oscillator pins XTAL1 & XTAL2. 8051 has an on chip

oscillator but requires external clock to run it. A quartz crystal oscillator is

connected to XTAL1 & XTAL2. If TTL oscillator is used then, it is connected to

XTAL1 and XTAL2 is left open.

Pin 9: Reset pin RST. It is an input and active high pin. On reset

microcontroller terminates all activities.

Pin 29: Program store enable is low enable pin PSEN. This pin should be

connected to OE pin of ROM chip when external memory is interfaced.

Pin 30: Address latch enable pin ALE. It is an output pin and active high.

Used for de-multiplexing the address and data by connecting to the G pin of

74LS373 chip.

Pin 31: External access pin which is active low EA. Connected to Vcc for on

chip ROM access and should be connected to Gnd while accessing external

memory.

16

Internal RAM Organization

Lower 128 Bytes of RAM

Byte

Addresses

7F

30

General purpose RAM (Scratch pad)

B
it

 A
d
d
re

s
s
a
b
le

 L
o
c
a
ti

o
n

s

2F 7F 7E 7D 7C 7B 7A 79 78

2E 77 76 75 74 73 72 71 70

2D 6F 6E 6D 6C 6B 6A 69 68

2C 67 66 65 64 63 62 61 60

2B 5F 5E 5D 5C 5B 5A 59 58

2A 57 56 55 54 53 52 51 50

29 4F 4E 4D 4C 4B 4A 49 48

28 47 46 45 44 43 42 41 40

27 3F 3E 3D 3C 3B 3A 39 38

26 37 36 35 34 33 32 31 30

25 2F 2E 2D 2C 2B 2A 29 28

24 27 26 25 24 23 22 21 20

23 1F 1E 1D 1C 1B 1A 19 18

22 17 16 15 14 13 12 11 10

21 0F 0E 0D 0C 0B 0A 09 08

20 07 06 05 04 03 02 01 00

 18 – 1F Bank 3

 10 – 17 Bank 2

 08 – 0F Bank 1

 00 – 07 Bank 0 (Default Register bank R0 – R7)

17

128 Bytes of Special Function Registers (SFR)

Byte

Addresses
Bit Addresses

SFR

Name

FF

F0 F7 F6 F5 F4 F3 F2 F1 F0 B

E0 E7 E6 E5 E4 E3 E2 E1 E0 ACC

D0 D7 D6 D5 D4 D3 D2 D1 D0 PSW

B8 - - - BC BB BA B9 B8 IP

B0 B7 B6 B5 B4 B3 B2 B1 B0 P3

A8 AF - - AC AB AA A9 A8 IE

A0 A7 A6 A5 A4 A3 A2 A1 A0 P2

99 Not bit addressable SBUF

98 9f 9e 9d 9c 9b 9a 99 98 SCON

90 97 96 95 94 93 92 91 90 P1

8D Not bit addressable TH1

8C Not bit addressable TH0

8B Not bit addressable TL1

8A Not bit addressable TL0

89 Not bit addressable TMOD

88 8F 8E 8D 8C 8B 8A 89 88 TCON

87 Not bit addressable PCON

83 Not bit addressable DPH

82 Not bit addressable DPL

81 Not bit addressable SP

80 87 86 85 84 83 82 81 80 P0

18

Special Function Register (SFR) Addresses

Symbol Name Address

ACC* Accumulator 0E0H

B* B Register 0F0H

PSW* Program Status World 0D0H

SP Stack Pointer 81H

DPTR Data Pointer 2 bytes

DPL Low byte 82H

DPH High byte 83H

P0* Port 0 80H

P1* Port 1 90H

P2* Port 2 0A0H

P3* Port 3 0B0H

IP* Interrupt Priority Control 0B8H

IE* Interrupt Enable Control 0A8H

TMOD Timer / counter mode control 89H

TCON* Timer / counter control 88H

T2CON* Timer / counter 2 control 0C8H

T2MOD Timer / counter mode control 0C9H

TH0 Timer / counter 0 high byte 8CH

TL0 Timer / counter 0 low byte 8AH

TH1 Timer / counter 1 high byte 8DH

TL1 Timer / counter 1 low byte 8BH

TH2 Timer / counter 2 high byte 0CDH

TL2 Timer / counter 2 low byte 0CCH

RCAP2H T/C 2 capture register high byte 0CBH

RCAP2L T/C 2 capture register low byte 0CAH

SCON* Serial control 98H

SBUF Serial data buffer 99H

PCON Power Control 87H

* Bit-addressable

19

20

Alphabetical List of Instructions

• ACALL - Absolute Call

• ADD, ADDC - Add Accumulator (With Carry)

• AJMP - Absolute Jump

• ANL - Bitwise AND

• CJNE - Compare and Jump if Not Equal

• CLR - Clear Register

• CPL - Complement Register

• DA - Decimal Adjust

• DEC - Decrement Register

• DIV - Divide Accumulator by B

• DJNZ - Decrement Register and Jump if Not Zero

• INC - Increment Register

• JB - Jump if Bit Set

• JBC - Jump if Bit Set and Clear Bit

• JC - Jump if Carry Set

• JMP - Jump to Address

• JNB - Jump if Bit Not Set

• JNC - Jump if Carry Not Set

• JNZ - Jump if Accumulator Not Zero

• JZ - Jump if Accumulator Zero

• LCALL - Long Call

• LJMP - Long Jump

• MOV - Move Memory

• MOVC - Move Code Memory

• MOVX - Move Extended Memory

• MUL - Multiply Accumulator by B

• NOP - No Operation

• ORL - Bitwise OR

• POP - Pop Value From Stack

• PUSH - Push Value Onto Stack

• RET - Return From Subroutine

• RETI - Return From Interrupt

21

• RL - Rotate Accumulator Left

• RLC - Rotate Accumulator Left Through Carry

• RR - Rotate Accumulator Right

• RRC - Rotate Accumulator Right Through Carry

• SETB - Set Bit

• SJMP - Short Jump

• SUBB - Subtract From Accumulator With Borrow

• SWAP - Swap Accumulator Nibbles

• XCH - Exchange Bytes

• XCHD - Exchange Digits

• XRL - Bitwise Exclusive OR

• Undefined - Undefined Instruction

22

INTRODUCTION

PROCESSOR used is Atmel AT89C51ED2 - Micro controller that has

64Kbytes of on-chip program memory. It is a version of 8051 with enhanced

features. AT 89C51ED2 operates at 11.0592 MHz

PROCESSOR FEATURES :

ON-CHIP MEMORY :

CODE MEMORY : 64 KBytes of flash.

DATA MEMORY : 256 Bytes of RAM, 1792 Bytes of XRAM, 2K Bytes of

EEPROM.

ON-CHIP PERIPHERALS : 2 16-bit Timers/Counters, Watch Dog Timer,

Programmable Counter Array (PCA) on Port1 i.e. PWM and Capture &

Compare, SPI (Serial Peripheral Interface) on Port1, Full duplex enhanced

UART.

INTERRUPTS : Nine sources of interrupt (both external and internal).

Two External interrupts INT0 and INT1 are provided with push button

switches; these can also be used as general-purpose switches.

I/O (Port) Lines : Four 10-pin connectors for all the 32 I/O lines. P0, P1

and P2 Port lines are available on a 26-pin connector.

16X2 LCD & SERIAL I/O : are also available.

23

Creating and compiling a μVision5 project (8051 ALP Programs)

1. Double Click on the μVision5 icon on the desktop.

2. Close any previous projects that were opened using – Project->Close.

3. Start Project – New Project, and select the CPU from the device database

(Database-Atmel- AT89C51ED2). (Select AT89C51ED2 or AT89C51RD2 as

per the board).On clicking ‘OK’, the following option is displayed. Choose

No.

4. Create a source file (using File->New), type in the assembly or C program

and save this (filename.asm/ filename.c) and add this source file to the

project by right clicking on the Source Group in the Project Window and

the Add Files to group option.

24

5. Build the project; using Project -> Build Project. µVision translates all the

user application and links. Any errors in the code are indicated by – “Target

not created” in the Build window, along with the error line. Debug the

errors. After an error free build, go to Debug mode.

6. Now user can enter into Debug mode with Debug- Start / Stop Debug

session dialog. Or by clicking in the icon.

7. The program is run using the Debug-Run command & halted using Debug-

Stop Running. Also the (reset, run, halt) icons can be used.

Additional icons are (step, step over, step into, run till cursor).

NOTE:

1. If it is an ALP program, the appropriate memory window is opened using

 View -> memory window (for data RAM & XRAM locations),

 Watch window (for timer program), serial window for serial data

transmission.

 To access data RAM area type address as D:0020h.

 Similarly to access the DPTR region (XRAM-present on chip in

AT89C51ED2) say

 9000h location type in X:09000H.

 To access the code memory type address as C:0020h.

2. If it is an interface program an extra step has to be followed before step 5

as illustrated for ALP programs to see the outputs on the LCD, CRO, motor,

led etc.

Set the Target options using -> Project – Options for Target opens the

μVision3 Options for Target – Target configuration dialog. Set the Xtal

25

frequency as 11.0592 Mhz, and also the Options for Target – Debug – use

either Simulator / Keil Monitor- 51 driver.

 If Keil Monitor- 51 driver is used,

Click on run to main() option. Then click on Settings -> COM Port

settings

Select com port to which the board is connected and select the baud rate

as 9600

 Enable Serial Interrupt option.

 If Simulator is used,

Go to view click on analysis window select logic analyzer to see the

waveforms.

26

Software

(Programming)

Experiments

27

Experiment No. : 1 Date : / / .

DATA TRANSFER PROGRAMS

Aim 1 : a) Write an assembly language program to transfer n = 10 bytes of

data from location 8035h to location 8050h (without overlap).

Algorithm :

1. Initialize origin of program at 0000H.

2. Jump to 30H and initialize origin at 30H.

3. Initialize registers to hold count & also the source & destination

addresses of code memory.

4. Load lower byte of address into DPL register.

5. Get data from source location into accumulator.

6. Move destination address into DPL register.

7. Transfer data to the destination location.

8. Increment source and destination addresses.

9. Decrement the counting register and check if it has reached Zero.

10. Repeat step 5 to 9 till count is zero.

Note : For data transfer with overlap start transferring data from the last

location of source array to the last location of the destination array.

Program :

Label
Mnemonic/
Operands

Comments

BACK:

HERE:

ORG 0000H

SJMP 30H

ORG 30H
MOV DPH,#80H

MOV R0,#35H

MOV R1,#50H

MOV R3,#0AH

MOV DPL, R0
MOVX A,@DPTR

MOV DPL, R1

MOVX @DPTR,A

INC R0

INC R1

DJNZ R3, BACK
SJMP HERE

END

//Origins program from 0000H location

//Unconditional jump to 30H

//Program starts from 30H
//Higher byte of address is stored in DPH

//Lower byte of source address

//Lower byte of destination address

//count- Number of bytes to be transferred

//DPTR stores complete source address
//Read content at source address

//Update DPTR with destination address

//Write data at destination

//Increment source address lower byte

//Increment destination address lower byte

//Decrement R3 & jump to BACK if its not Zero
//Infinite looping

//End directive

28

RESULT :

Before Execution : 10 locations X:8035h are filled up with data.

After Execution : 10 locations X: 8050h are filled up with data from 8035h.

Aim 2 : b) Write an assembly language program to exchange n = 5 bytes of

data at Location 0027h and at location 0041h.

Algorithm:

1. Initialize origin of program at 0000H.

2. Jump to 30H and initialize origin at 30H.

3. Initialize registers to hold count data & also the source & destination

addresses.

4. Initialize registers to hold count (array size) & also the source &

destination addresses.

5. Get data from source location into accumulator and save in a register.

6. Get data from the destination location into accumulator.

7. Exchange the data at the two memory locations.

8. Increment source and destination addresses.

9. Decrement the counting register and check if it has reached Zero.

10. Repeat from step 5 to 9 till count is zero.

29

Alter using XCH command

Algorithm:

1. Initialize origin of program at 0000H.

2. Jump to 30H and initialize origin at 30H.

3. Initialize registers to hold count data & also the source & destination

addresses.

4. Initialize registers to hold count (array size) & also the source & destination

addresses.

5. Get data from source location into accumulator and save in a register.

6. Exchange data using XCH command.

7. Increment source and destination addresses.

8. Decrement the counting register and check if it has reached Zero.

9. Repeat from step 5 to 8 till count is zero.

Program

Without XCH command With XCH command

Label
Mnemonic/

Operands
Comments Label

Mnemonic/

Operands
Comments

BACK:

 HERE:

ORG 0000H

SJMP 30H

ORG 30H

MOV R0,#27H
MOV R1,#41H

MOV R3,#05H

MOV A,@R0

MOV R2,A

MOV A,@R1
MOV @R0,A

MOV A, R2

MOV @R1,A

INC R0

INC R1

DJNZ R3, BACK
SJMP HERE

END

BACK:

HERE:

ORG 0000H

SJMP 30H

ORG 30H

MOV R0,#27H
MOV R1,#41H

MOV R3,#05H

MOV A,@R0

XCH A,@R1

MOV @R0,A
INC R0

INC R1

DJNZ R3, BACK

SJMP HERE

END

30

RESULT:

Before Execution : 5 locations at X:0027h & X:0041h are filled up with
data.

After Execution : The data at X:8027h & X:8041h are exchanged.

Results / Conclusion :

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

31

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

32

Experiment No. : 2 Date : / / .

ARITHMETIC OPERATIONS
ASSEMBLY LANGUAGE PROGRAM ILLUSTRATING ADDITION,

SUBTRACTION, MULTIPLICATION AND DIVISION

Aim 1 : a) Write an ALP to perform the following:

If x = 0-perform w + v;

Else if x = 1-perform w - v;

Else if x = 2-perform w * v;

Else if x = 3-perform w / v, where w & v are eight bit numbers.

Algorithm:

1. Store the condition x in R1.

2. Load the first and second numbers to A and B registers respectively

3. Compare the contents of R1 and perform the operations add, sub, etc

accordingly.

4. Store the result present in A and B registers to the appropriate memory

locations.

Program:

Label Mnemonic/Operands Comments

SKIP:

CKSUB:

ORG 0000H

SJMP 30H
ORG 30H

MOV R0, #40H

MOVX A,@R0

MOV R1, A

INC R0

MOVX A,@R0
MOV B, A

INC R0

MOVX A,@R0

CJNE R1,#00,CKSUB

ADD A,B

MOV B,#00
JNC SKIP

MOV B,#01H

SJMP LAST

CJNE R1,#01,CKMUL

CLR C
SUBB A,B

MOV B,#00

JNC SKIP1

33

SKIP1:

CKMUL:

CKDIV:

OTHER:

LAST:

HERE:

MOV B,#0FFH

SJMP LAST

CJNE R1,#02,CKDIV

MUL AB
SJMP LAST

CJNE R1,#03,OTHER

DIV AB

SJMP LAST

MOV A,#00

MOV B,#00
INC R0

MOVX @R0,A

INC R0

MOV A,B

MOVX @R0,A
SJMP HERE

END

RESULT:

Before Execution: ADD Before Execution: SUB

After Execution: ADD After Execution: SUB

Before Execution: MUL After Execution: MUL

Aim 2 : b) Write an assembly language program to sort an array of n= 6 bytes

of data in Descending order stored from location 9000h. (Use bubble sort

algorithm).

34

Algorithm

1. Store the elements of the array from the address 9000h

2. Initialize a pass counter with array size-1 count (for number of passes).

3. Load compare counter with pass counter contents & initialize DPTR to

point to the start address of the array (here 9000h).

4. Store the current and the next array elements pointed by DPTR in registers

B and r2 respectively.

5. Subtract the next element from the current element.

6. If the carry flag is set (for ascending order) then exchange the 2 numbers

in the array.

7. Decrement the compare counter and repeat through step 4 until the

counter becomes 0.

8. Decrement the pass counter and repeat through step 3 until the counter

becomes 0.

Program:

Label Mnemonic/Operands Comments

L1:

L2:

NOEXCHG:

HERE:

ORG 0000H

SJMP 30H

ORG 30H
MOV R0,#05

MOV DPTR,#9000h

MOV A,R0

MOV R1,A

MOVX A,@DPTR

MOV B, A
INC DPTR

MOVX A, @DPTR

CLR C

MOV R2, A

SUBB A, B
JC NOEXCHG

MOV A,B

MOVX @DPTR,A

DEC DPL

MOV A,R2

MOVX @DPTR,A
INC DPTR

DJNZ R1,L2

DJNZ R0,L1

SJMP HERE

END

35

RESULT:

Before Execution: Unsorted Array at 9000h

After Execution: Sorted Array (Descending order) at 9000h

Results / Conclusion :

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

36

References:

1.

2.

3.

4.

Signature of staff incharge with date:

37

Experiment No. : 3 Date : / / .

PROGRAM ILLUSTRATING BIT MANIPULATIONS
(Bit manipulation, Boolean & Logical Instructions programs)

Aim 1 : a) Assembly Program Illustrating Logical Instructions (Byte Level)

3 eight bit numbers X, NUM1 & NUM2 are stored in internal data RAM
locations 20h, 21h & 22H respectively.

Write an ALP to compute the following:

IF X=0; THEN NUM1 (AND) NUM2,

IF X=1; THEN NUM1 (OR) NUM2,

IF X=2; THEN NUM1 (XOR) NUM2,

ELSE RES =00,

STORE RES AT 23H LOCATION

Algorithm:

1. Point to the data RAM register 20h and store the condition x.

2. Point to 21h and 22h and move the first number to A register.

3. Compare the contents of r1 and perform the operations accordingly.

4. The result will be stored in 23H register.

Program:

Label Mnemonic/Operands Comments

CKOR:

CKXOR:

OTHER:
END1:
HERE:

ORG 0000H
SJMP 30H
ORG 30H
MOV A, 20h
MOV R1, A
MOV A, 21H
CJNE R1,#0,CKOR
ANL A, 22H

SJMP END1
CJNE R1,#01,CKXOR
ORL A, 22H
SJMP END1
CJNE R1,#02,OTHER
XRL A, 22H
SJMP END1
CLR A
MOV 23H, A
SJMP HERE
END

38

RESULT:

1) Before Execution: D: 020H =00, 21=0f, 22 = 12

 After Execution D: 023H = 02

2) Before Execution: D: 020H =01, 21=0f, 22 = 12

After Execution D: 023H = 1F

3) Before Execution: D: 020H =02, 21=0f, 22 = 12

After Execution D: 023H = 1D

4) Before Execution: D: 020H =34, 21=0f, 22 = 12

After Execution D: 023H = 00

Aim 2 : b) 3 eight bit numbers X, NUM1 & NUM2 are stored in internal data

RAM Locations 20h, 21h & 22H respectively.

Write an ALP to compute the following:

IF X=0; THEN LSB OF NUM1 (AND) LSB OF NUM2,

IF X=1; THEN MSB OF NUM1 (OR) MSB OF NUM2,

IF X=2; THEN COMPLEMENT MSB OF NUM1

STORE THE BIT RESULT IN RES,

WHERE RES IS MSB OF 23H LOCATIONS

Algorithm:

1. Move the condition X (from 20h location) into R0 register.

2. If X=0; then move LSB bit of 21h to carry flag and ‘AND’ Carry flag with

LSB bit of 22h. Go to step5

3. If X=1; then move MSB bit of 21h to carry flag and ‘OR’ Carry flag with

MSB bit of 22h. Go to step5

4. If X=0; then complement MSB bit of 21h and move it to carry flag. Go to

step5

5. Store Carry flag at MSB bit of 23h location.

39

Program:

Label Mnemonic/Operands Comments

CK1:

CK2:

CK3:

LAST:
HERE:

ORG 0000H
SJMP 30H
ORG 30H
MOV R0,20H
CJNE R0,#0,CK1
MOV C, 08H
ANL C, 10H
SJMP LAST
CJNE R0, #1, CK2
MOV C, 0FH

ANL C, 17H
SJMP LAST
CJNE R0,#2,CK3
CPL 0FH
MOV C, 0FH
SJMP LAST
CLR C
MOV 1FH, C
SJMP HERE
END

RESULT:

20h = 00 => AND OF LSBs =1 (hence 80 in 23h location)

20h = 01 => OR of MSBs = 0 (hence 00 in 23h location)

20h = 01 =>complement of MSB of 21h location. Hence 21h is changed to A1
and 23h location has 80h

40

Before Execution After Execution

Results / Conclusion :

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

41

Experiment No. : 4 Date : / / .

COUNTERS

Aim 1 : a) Write an ALP to implement (display) an eight bit up/down BCD

counters on watch window.

Note: To run this program, after selecting DEBUG session in the main menu

use

View-> Watch& call Stack window, in the Watches select watch 1(or 2) and

press F2 and enter a (for accumulator A)

Algorithm:

1. Move 00 to A register

2. Call the delay subroutine for 1 second (in delay program move FFH to

registers R1, R2 and R3, loop and decrement until 0).

3. Increment A register(add 99h for down counter)

4. Decimal adjust accumulator for the BCD up/down counter.

Program:

Label Mnemonic/Operands Comments

BACK:

HERE:

DELAY:
DECR1:
DECR:

ORG 0000H
SJMP 30H
ORG 30H
MOV a,#00
ACALL DELAY
ADD A,#99H
DA A
JNZ BACK
SJMP HERE

MOV R1,#35H
MOV R2,#0FFH
MOV R3, #0FFH
DJNZ R3,$
DJNZ R2, DECR
DJNZ R1, DECR1
RET
END

RESULT: Accumulator A is incremented in BCD from 00, 01, 02…09, 10,

11,…99.

42

Aim 2 : b) Write an ALP to implement (display) an eight bit up/down BCD

counters by using timer delay.

Algorithm:

1. Set up timer0 in mode 2 operation

2. Load TH1 with 118 to generate an interrupt every 0.05msec.

3. Reset registers a, r1 & r0.

4. Repeat step 4 continuously

5. On interrupt; ISR at 000B location goes to step 6

6. Disable timer0

7. Update r1 & r0

8. Check if 20000 interrupts (=1 sec) over. Yes –increment accumulator a.

9. Enable timer & return from ISR.

Program:

Label Mnemonic/Operands Comments

HERE:

ISR:

SKIP:

ORG 0000H

SJMP 30H

ORG 0BH

SJMP ISR

ORG 30H

MOV A, #00
MOV R0,#00

MOV R1,#00

MOV TMOD, #02H

MOV TH0, #118

MOV IE, #82H
SETB TCON.4

SJMP HERE

CLR TCON.4

INC R1

CJNE R1,#100,SKIP

MOV R1,#00
INC R0

CJNE R0,#200,SKIP

MOV R0,#00H

INC A

SETB TCON.4
RETI

END

43

RESULT : Accumulator A is incremented in hex from 00, 01,02…09,0A, 0B,

…, 0F, 10, 11, …FF every 1 second (for 33MHz clock setting & every 3 seconds

for 11.0592MHz)

TCON Function Register

7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Interrupt Address(Hex)

IE0 0003

TF0 000B

IE1 0013

TF1 001B

Serial 0023

44

To get 1sec delay

1/0.05msec = 200*100 in the ISR

(Assuming 33 MHz crystal frequency.

For 11 MHz, the calculations change).

Timer delay = 12 * (257-delay)/frequency

Timer delay=0.05 msec

Delay = 256-((timer delay * frequency)/12)

= 256-(0.05*10 -3 * 33*106)/12

 = 256-137.5

= 118.5 //loaded in TH0

Results / Conclusion :

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:

1.

2.

3.

4.

45

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

46

Experiment No. : 5 Date : / / .

CONVERSION PROGRAMS

Aim 1 : a) Write an ALP to implement decimal to hex conversion.

Algorithm:

1. Move the decimal data to be converted from external memory 40h to

accumulator.

2. AND A reg with 0f0h and obtain the upper MSB of the decimal digit and

swap the LSB and MSB of accumulator to bring the same to units place.

3. Move 0ah to B register and multiply with A reg to convert to hex value,

store the converted tens value in r1

4. Get the LSB of the decimal number and add to the converted tens value

5. Point to the next memory location and store the result (hexadecimal).

Program:

Label Mnemonic/Operands Comments

HERE:

ORG 0000H
SJMP 30H

ORG 30H
MOV DPTR,#40H

MOVX A, @DPTR
ANL A, #0F0H
SWAP A

MOV B,#0AH
MUL AB

MOV R1,a
MOVX A,@DPTR
ANL A,#0FH

ADD A,R1
INC DPTR
MOVX @DPTR,A

SJMP HERE
END

RESULT: Before execution- X: 0040H = 45 (Decimal/BCD)

 After Execution: X: 0041h = 2D (hex value)

Aim 2 : b) Write an ALP to implement hex to decimal conversion

47

Algorithm:

1. Move the hex data to be converted to accumulator.

2. Move 10 to B register and divide with A reg to convert to ASCII value

3. Store the converted LSB value in r7

4. Repeat the step 2 to obtain the converted MSB value

5. Store the same in r6

Program:

Label Mnemonic/Operands Comments

HERE:

ORG 0000H
SJMP 30h

ORG 30h
MOV DPTR,#9000H
MOVX A,@DPTR

MOV B,#10
DIV AB

INC DPTR
XCH A,B
MOVX @DPTR, A

XCH A,B
MOV B,#10
DIV AB

INC DPTR
XCH A,B

MOVX @DPTR, A
XCH A,B
INC DPTR

MOVX @DPTR, A
SJMP HERE
END

RESULT : 9000H – FF (HEX NUMBER)

 9001 to 9003 – unpacked BCD number (decimal) - 5, 5, 2

 (i.e., 255 stored Lower digit first)

Results / Conclusion :

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

48

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

49

Experiment No. : 6 Date : / / .

SERIAL DATA TRANSMISSION with variable baud rate–8051

Aim : Write a program illustrating serial ASCII data transmission (data-

BHARAT). Conduct an experiment to configure 8051 microcontroller to

transmit characters (BHARAT) to a PC using the serial port and display on

the serial window.

Algorithm:

1. Initialize timer 1 to operate in mode 2 by loading TMOD register.

2. load TH1 with -3 to obtain 9600 baud.

3. Initialize the asynchronous serial communication transmission (SCON)

register.

4. Start timer1 to generate the baud rate clock.

5. Transmit the characters “BHARAT” by writing into the SBUF register and

waiting for the TI flag.

Program:

Label Mnemonic/Operands Comments

AGAIN:

BACK:
TRANS:
HERE:

MYDATA:

ORG 0000H
SJMP 30H
ORG 30H
MOV R0,#05H
MOV DPTR, #300H
MOV TMOD,#20H
MOV TH1, #-3
MOV SCON, #50H
SETB TR1
CLR A
MOVC A, @A+DPTR
JZ BACK
ACALL TRANS
INC DPTR
SJMP AGAIN
SJMP BACK
MOV SBUF, A
JNB TI, HERE

CLR TI
RET

ORG 300H
DB “BHARAT”,0
END

//-3=FD loaded into TH1 for 9600 baud,
11.0592MHz.

50

Note: To use result of this program, after selecting DEBUG session in the

main menu use View-> serial window #1. On running & halting the

program, the data is seen in the serial window.

RESULT: “BHARAT” is printed on the serial window each time the program is

executed.

Theory: In serial transmission as opposed to parallel transmission, one bit

at a time is transmitted. In serial asynchronous transmission, the data

consists of a Start bit (high), followed by 8 bits of data to be transmitted and

finally the stop bit. The byte character to be transmitted is written into the

SBUF register. It transmits the start bit. The 8-bit character is transferred one

bit at a time. The stop bit is transferred. After the transmission, the TI flag =

1 indicating the completion of transmission. Hence in the subroutine wait

until TI is set. Later clear the TI flag and continue with transmission of the

next byte by writing into the SBUF register. (The program can also be written

in interrupt mode). The speed of the serial transmission is set by the baud

rate which is done with the help of timer 1. (Refer Ayala). Timer1 must be

programmed in mode 2 (that is, 8-bit, autos reload).

Baud rate Calculation:

Baud Rate = Crystal freq/ (12*32)

= (11.0592MHz)/(12*32)

= 28800

To get 9600, 28800/3 is obtained by loading timer1 with -3 (i.e., FF – 3 = FD)

for further clock division. For 2400 baud rate, 28800/12 => -12 = F4 in TH1.

Results / Conclusion :

The experiment was conducted successfully, the o/p is observed & the results

are neatly tabulated and the conclusions are drawn.

51

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

52

Hardware

Interfacing

Experiments

53

Features of Embedded C :

 C is a simple programming language and so very easy to code.

 Embedded C has most features of C-language with more stress on

certain bit manipulative instructions.

 This feature makes it easy to write program for μC and μP.

 Keil is a versatile software with a cross compiler that will convert the C

program to assembly language and thus the program can be executed

on the desired target (say 8051).

 Some of the bit manipulative instructions used are

Symbol Operation

& Bitwise AND

| Bitwise OR

~ Bitwise NOT

>> Shift right

<< Shift left

^ Dot operator

54

Experiment No. : 7 Date : / / .

Dual DAC Interface to generate different types of waveforms

Aim : a) Implementation of DAC 0808 interface to 8051 to generate square,

triangular, ramp waveforms. Dual DAC Interface to generate …..

a. Square waveform

b. Triangular Waveform

c. Ramp waveform

d. Sine waveform

a). Algorithm for Square wave generation:

 Let initial, amplitude of the square wave be 2.5v (7F) and frequency count

100.

 Output the values 00h (0ff) and 7fh (on) Values through P0.

 If amplitude key is pressed then increase the voltage in steps of 0.15v (8).

 If the frequency key is pressed increment the count in steps of 50. If the

count exceeds 1000 reset it back to 100.

 Every time amplitude and frequency changes output the value thro P0 and

note the waveform on CRO.

Theory: Majority of the integrated circuits of DAC use the R/2R method since

it can achieve higher degree of precision. The basic criterion for judging a DAC

is its resolution, which is a function of the binary inputs. The common ones

are 8, 10 and 12 bits. The number of data bit inputs decides the resolution of

the DAC since the number of analog levels is equal to 2n, where n is number

of data nit inputs. Therefore the 8-input DAC such as DAC0800 provides 256

discrete voltage (or current) levels of output.

The digital inputs are converted to current (Iout) and by connecting resistor or

op-amp to the Iout pin, we convert the result into voltage. The total current

provided by the Iout pin is a function of the binary numbers at the D0-D7

inputs of the DAC and the reference current (Iref), and is as follows:

55

Iout= Iref (D7/2 + D6/3 + D5/8 + D4/16 + D3/32 + D2/64 + D1/128 + D0/256)

Where D0 is the LSB and D7 is the MSB of the inputs, and Iref is the input

current that must be applied to pin 14. The Iref current is generally 2mA.

Some DAC also use zener diode (LM336) which overcomes any flu8ctuations

associated with the power supply. If Iref is 2mA then when all inputs are high

the maximum current is 1.99mA.

Driver Circuit Description:

The Dual DAC interface can be used to generate different waveforms using

microcontroller. There are two 8-bit analog to digital converters provided

based on DAC0800. The digital inputs to these DACs are provided through

the Port 0 and Port 1. The analog output from the DAC is given to operational

amplifier which acts as current to voltage converter and isolator between CRO

circuit and DAC chip. The output of the op-amp is connected to Xout and

Yout points on board from which the waveforms can be observed on CRO. Two

10k Ohm pots are provided for the offset balancing of op-amps. The reference

voltage required for the DAC is obtained from onboard voltage regulator

uA723. The voltage generated by this regulator is about 8V. The output of the

DAC vary from 0 V to 5V corresponding to values between 00 to FF

respectively.

Installation:

 The interface module has a 26-pin connector at one edge of the card which

is connected to Microcontroller board through FRC (Flat Ribbon Cable)

connector.

 External power supply of +12, -12 and GND are connected to points

marked through 4-pin connector provided.

Applications: Sound card, CD players, Digital music players etc…

Program for square wave:

#include <REG51xD2.H>

sbit Amp = P3^3; /* Port line to change amplitude */

sbit Fre = P3^2; /* Port line to change frequency */

void delay (unsigned int x) /* delay routine */

{

for (;x>0;x--);

}

main()

56

{

unsigned char on = 0x7f,off=0x00;

unsigned int fre = 100;

while(1)

{

if(!Amp) /* if user choice is to change amplitude */

{

while(!Amp); /* wait for key release */

on+=0x08; /* Increase the amplitude */

 }

if(!Fre) /* if user choice is to change frequency */

{

if(fre > 1000) /* if frequency exceeds 1000 reset to default */

fre = 100;

while(!Fre); /* wait for key release */

fre += 50;

} /* Increase the frequency */

 P0=on; /* write amplitude to port */

P1=on;

delay(fre);

P0 = off; /* clear port */

P1 = off;

delay(fre);

}

}

Simulation output:

b) Algorithm for Triangular wave generation:

 Output the initial value 00 through P0.

 Increment it in steps of 1 until a count value of FFh (5V) is reached. Every

time repeat step 1.

 Decrement it in steps of 1 until a zero value is reached and repeat step 1.

57

Program for triangular wave:

#include <REG51xD2.H>

main()

{

 unsigned char i=0,slope=1;

 P0 = 0x00; /* P0 as Output port */

 while(1)

 {

 for(i=0;i<0xfe;) /* Generate ON pulse */

 {

 P1 = i;

 P0 = i;

 i=i+slope;

 }

 for(i=0xfe;i>0x00;) /* Generate OFF pulse */

 {

 P0 = i;

 P1 = i;

 i=i-slope;

 }

 }

}

Simulation output:

58

c) Algorithm for Ramp wave generation

 Output the initial value 00 through P0.

 Increment it in steps of 1 until a count value of FFh (5V) is reached. Every

time repeat step 1.

 Repeat step 1 & 2 continuously.

Program for Ramp waveform

#include <REG51xD2.H>

main ()

{

Unsigned char i=0,slope=1,rising=1;

P0 = 0x00; /* P0 as Output port */

while (1)

{

If(rising==1)

 {

 for(i=0;i<0xfe;) /* Generate ON pulse */

 {

 P1 = i;

 P0 = i;

 i=i+slope;

 }

 }

else

 {

 for(i=0xfe;i>0x00;) /* Generate OFF pulse */

 {

 P0 = i;

 P1 = i;

 i=i-slope;

 }

 }

}

 }

59

Simulation output:

Results / Conclusion :

The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

60

References:

1.

2.

3.

4.

Signature of staff incharge with date:

61

Experiment No. : 8 Date : / / .

STEPPER MOTOR INTERFACE TO 8051

Aim : Perform an experiment to interface a stepper motor to the 8051

microcontroller.

Description

 Unlike DC motor Stepper motor rotates in steps.

 Programmatically following parameters can be controlled
o Angle of rotation

o Direction of rotation
o Speed of rotation (RPM)

 Stepper motor has 4 coils which forms the stator and a central rotor.

 Rotation depends on excitation of stator coils.

 step coil A coil B coil C coil D

 1 0 0 0 1
 2 1 0 0 0
 3 0 1 0 0

 4 0 0 0 1

Anyone of these values forms the initial value. To get 360o revolution 200

steps are required. Step angle= 360o /200 = 1.8o (difference between 2 teeth).

Algorithm for Stepper Motor

 Configure P0 as output.

 Apply the initial excitation of 11 to motor coils through P0.

 For clockwise motion -Rotate right once the excitation and repeat step 2.

 For anticlockwise motion -Rotate left once the excitation and repeat step

2.

62

Theory:

A stepper motor is a device that translates electrical pulses into mechanical

movement. The stepper motor shaft moves in a fixed repeatable increment,

which allows precise angle control. This repeatable fixed movement is possible

as a result of basic magnetic theory where poles of the same polarity repel

and opposite polarity attract. The direction of the rotation is dictated by the

stator poles. The stator poles are determined by the current sent through the

wire coils. As the direction of the current is changed, polarity is also changed

causing the reverse motion of the rotor.

Step angle : This depends on the number of teeth on the stator and the rotor.

Step angle is the minimum degree of rotation associated with the single step.

We are using a stepper motor with 50 teeth on rotor and 4 on stator, hence

the step angle is calculated as

Step Angle = 360/ (No. of teeth on rotor × No of teeth on Stator)

 = 360/ (50 × 4)
 = 1.8

Therefore steps per revolution are 200.

Steps per second and rpm relation.

Steps/sec = (rpm x Steps per revolution) / 60

Drive sequences:

4 step sequence: 1001,1100,0110,0011

8 Step sequence: 1001, 1000,1100,0100,0110,0010,0011,0001

Wave drive 4 step sequence: 1000,0100,0010,0001

Types of stepper motor:

 Permanent magnet (PM)

 Variable reluctance (VR)

63

Comparison of different types (based on phase) of stepper motor are :

Parameter Universal Unipolar Bipolar

Number of connections 8 6 4

Modes All 3 2 (Uni / Bi) Only Bi

Extra circuitry - - H-bridge

Operational current Low Low High

Holding torque Low Low High

Construction:

Stepper motors commonly have permanent magnet rotor (also referred as

shaft) surrounded by a stator. Stepper motor have four stator windings that
are paired with the centre tapped common, this type is commonly referred as
four phase or Unipolar stepper motor. The centre tap allows change of the

current direction in each of two coils when winding is grounded thereby
resulting in polarity change of stator. The stepper motor used has total of 6

leads, 4 leads represent 4 stator winding and 2 common for the centre tapped
leads.

Driver Circuit Description:

The stepper motor interface uses 4 transistor pairs (SL100 & 2N3055) in a

Darlington pair configuration. Each Darlington pair is used to excite the
particular winding of the motor connected to 4 pin connector on the interface.

The inputs to these transistors are from the Microcontroller board. Lower
nibble of Port 0 i.e. P0.0, P0.1, P0.2, p0.3 are the four lines brought out of the
26 pin FRC male connector (J7) on the interface module. The freewheeling

diodes across each winding protect transistor from switching transients.

Installation:

 The interface has two 3-pin and one 4pin connectors.

 Plug in 4-pin polarized connector of the motor to interface and the 3-pin
connector of the motor to 3-pin connector of the interface marked as “WHT
BLK”.

 Connect 3-pin female connector of the stepper motor power supply to the
connector of the interface marked as “GND +5/12V”.

 Connect the 26-pin FRC on the interface module to J7 of controller kit.

Applications:

Card reader, dot matrix printers, Hard disk drive (HDD), Floppy disk drive
(FDD), CD/ DVD drive, Clocks to rotate hands etc…

64

//Program for stepper motor interface :

#include <REG51xD2.H>
void delay (unsigned int x) /* Delay Routine */

{
for(;x>0;x--);
return;

}
Main ()
{

unsigned char Val, i;
P0=0x00;
Val = 0x11;

for (i=0;i<4;i++)
{

P0 = Val;
Val = Val<<1; /* Val= Val>>1; for clockwise direction*/
delay (500);

}
}

Simulation output :

Results / Conclusion :

The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:

1.

2.

3.

4.

65

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

66

Experiment No. : 9 Date : / / .

DC MOTOR INTERFACE TO 8051

Aim : Perform an experiment to interface a DC motor to the 8051

microcontroller.

Algorithm for DC motor interface :

• Configure P0, P1 as output port and P3 as input port.

• Let initially the motor rotate with half speed count 7fh.

• If “INR” button is pressed reduce the count because the speed is inversely

proportional to count.

• If “DEC” button is pressed increase the count.

Fig. : Block-diagram of the interfacing of a DC motor to a microcontroller

Theory:

Direct current (DC) motor is another widely used device that translates

electrical to mechanical movement. In DC motor we have only + and – leads.

Connecting from DC voltage source moves the motor in one direction and by

reversing the polarity, the motor will move in opposite direction. DC motors

have two rpms : no load and loaded which will be indicated on data sheet

specifications. The normal voltage rating varies from 1V to 150V and current

rating varies from 25mA to few amperes. The DC motor follows three

important relations shown below.

Rpm = k / load; at constant current

Rpm = k × current; at constant load

Current = k × load; at constant Rpm

where, k is constant of proportionality.

67

DC motor speed can be varied using PWM (Pulse Width Modulation)

technique. By changing the width of the pulse applied to the DC motor the

speed of the motor is varied. Even though the amplitude of the voltage is same

as the width of the ON time of pulse increases speed also increases.

Installation:

 Connect DC motor to Microcontroller board through FRC cable to J7 (26-

Pin connector).

 AC main Power supply is independently connected to DC motor.

Application:

1. CPU fan, Processor cooling fan etc…

Program for DC motor :

#include <REG51xD2.H>

sbit inr= P3^2; //speed increment switch
sbit dcr= P3^3; //speed decrement switch
main()

{
unsigned char i=0x80;
P0 = 0x7f; /*Run the motor at half speed.*/

while (1)
{

if (!inr)
{

while (!inr);

if(i>10)
i=i-10; //increase the DC motor speed

}

if(!dcr)
{

while(!dcr);
if(i<0xf0)
i=i+10; //decrease the DC motor speed

}
P0=i;

}
}

68

Results / Conclusion :

The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

69

Experiment No. : 10 Date : / / .

ALPHANUMERIC LCD PANEL INTERFACE TO 8051

Aim : Perform an experiment to interface an alphanumeric LCD panel to the

8051 microcontroller.

Theory: A liquid crystal display (LCD) is a thin, flat electronic visual display

that uses the light modulating properties of liquid crystals (LCs).LCD panels

have in built refreshing controller relieving CPU from the task. LCDs are more

energy efficient, and offer safer disposal, than CRTs. Its low electrical power

consumption enables it to be used in battery-powered electronic equipment.

It is an electronically-modulated optical device made up of any number of

pixels filled with liquid crystals and arrayed in front of a light source

(backlight) or reflector to produce images in color or monochrome.

Pin Description:

Pin Symbol I/O Description

1 Vss -- Ground

2 Vcc -- +5V Power supply

3 Vee -- Power supply to control contrast

4 RS I
‘0’ to select command register ;

‘1’ to select data register

5 R/W I ‘0’ for write ; ‘1’ for Read

6 E I/O Enable

7-14 DB0 – DB 7 I/O The 8-bit data bus

LCD Command codes:

Hex
Code

Instruction description
Hex
Code

Instruction description

01 Clear display screen 0E Display ON, cursor blinking

02 Return home 0F Display ON, cursor blinking

04
Decrement cursor
(Shift cursor to left)

10 Shift cursor position to left

06
Increment cursor
(Shift cursor to right)

14 Shift cursor position to right

70

05 Shift display right 18
Shift the entire display to

left

07 Shift display left 1C
Shift the entire display to
right

08 Display OFF, cursor OFF 80
Force cursor to beginning of
1st line

0A Display OFF, cursor ON C0
Force cursor to beginning of
2nd line

0C Display ON, cursor OFF 38 2 lines and 5x7 matrix

Driver Circuit Description :

LCD accepts characters in ASCII format. Character display font in LCD

module is dot matrix i.e. each character in LCD module can be represented

by 7x5 matrix. This module is built over 16x1 LCD in which the display data

RAM address for the first line is from 00H to 14H and for second line it is 29H

to 3CH

LCD module has got an automatic reset which is critically dependent upon

power supply voltage. Voltage has to rise from 0.2V to 5V within 10 to 15 ms

for LCD to reset. Since this is not accurate; it can also be reset during

initialization. To reset 30H has to be sent 3 times with some delay, busy flag

of LCD module is set while LCD is resetting, during this time data can’t be

written on to the LCD.

 Port 2 of microcontroller is connected to D0 to D7 pins of LCD module.

 Control signals RS, R/W and E are connected to P3.7, P3.6 and P3.5

respectively.

Program :

#include<reg51xd2.h>

//Function prototype declaration

void lcdcmd (unsigned char value);

void msdelay (unsigned int itime);

void lcddata (unsigned char value);

unsigned int i;

sfr ldata=0XA0; //0xA0 is address of Port 2

sbit rs = P3^7; //rs -> Register Select, 0 – Command Register: 1-Data

Register

sbit rw = P3^6; //rw -> Read / Write, 0 – Write : 1- Read

sbit en = P3^5; //en -> Enable

void main()

{

lcdcmd(0x38); //Defines character matrix i.e 7x5

71

msdelay(250); //Delay is introduced as LCD need time to respond

lcdcmd(0x0E); //Display on cursor blinking

msdelay(250);

lcdcmd(0x01); //Clear display

msdelay(250);

lcdcmd(0x06); //Increment cursor

msdelay(250);

lcdcmd(0x86);

msdelay(250);

lcddata('E');

msdelay(250);

lcddata('N');

msdelay(250);

lcddata('C');

}

void lcdcmd(unsigned char value)

{

ldata=value; //Information bits are copied to Port 2

rs=0; //Selecting Command register

rw=0; //Opted for Write operation

en=1;

msdelay(1);

en=0;

return;

}

void lcddata(unsigned char value)

{

ldata=value;

rs=1; //Selecting Data Register

rw=0;

en=1;

msdelay(1);

en=0;

return;

}

void msdelay(unsigned int itime)

{

unsigned int i,j;

for(i=0;i<itime;i++)

for(j=0;j<1275;j++);

}

72

Results / Conclusion :

The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

73

Experiment No. : 11 Date : / / .

ELEVATOR INTERFACE TO 8051 MICROCONTROLLER

Aim : Perform an experiment to interface an ELEVATOR to the 8051

microcontroller.

Algorithm for elevator interface :

• Read the floor request through input port P1.

• If the current floor and requested floor are the same no change light up

the corresponding LED through P0.

• If the requested floor greater than current moving up of the lift is

indicated by glowing of LED’s from current floor to the requested.

• If the requested floor lesser than current moving down of the lift is

indicated by glowing of LED’s from current floor to the requested.

Fig. : Block diagram of an elevator interface to the microcontroller

NOTE:

 All active low Signals.

 Also there are two types of LEDS here.

 One is Floor LED which is controlled by Flip-Flop in turn controlled by

Port 0 higher 4 bits.

 Totally there are 4 Floor LEDs (Fl0 Fl1 Fl2 Fl3).

74

One more type of LED’s are Small LED’s on left side of diagram. They are just

intermediate LEDs which are made to glow as the elevator moves from one

floor to another. These LEDS are controlled by ABCD which acts as a decoder.

ABCD= 0000 means Small LED 0 for D0

 = 0001 means Small LED 1 for D1
 ……….
 = 1001 means Small LED 9 for D9

Flip flops are cleared to make Floor LEDs stop glowing.

Why the 0xff, 0x00, 0x03, 0xff, 0x06, 0xff, 0xff, 0xff, 0x09 in Flr array ????

0x00-0th floor; 0x03-1st floor; 0x06 2nd floor; 0x09 3rd floor; all other filled
with ff just to make it 9 byte array. 0xff do not represent anything.

Similarly for FClr array

Port 0 :

Flipflop 3rd
floor clear

Flipflop 2nd
floor clear

Flipflop 1st
floor clear

Flipflop 0th
floor clear

D C B A

Port 1

FloorLed
3rd floor
control

FloorLed
2nd floor
control

FloorLed
1st floor
control

FloorLed
0th floor
control

75

Theory:

This interface simulates the control and operation of an elevator. Four floors

are assumed and for each floor a key and a corresponding LED indicator are

provided to serve as request button and request status indicators. The

elevator itself is represented by a column of ten LEDs. The motion of elevator

is simulated by turning on successive LEds one at a time. The delay between

turning OFF one LED and turning ON the next LED indicates speed of

elevator. The request status information is read through lower nibble of Port1

and elevator motion control is done through Port0.

Driver Circuit Description:

The interface has 4 keys, marked 0, 1, 2, and 3 representing the request

button at the 4 floors. Pressing of a key, cause a corresponding flip flop to be

set. The output of the Flip flop can be read through lower nibble of Port1 (P1.0,

P1.1, P1.2 and P1.3) also status of these signals is reflected by the set of 4

LEds. The flip flops can be reset (LEDs are cleared) through higher nibble of

Port0 (P0.4, P0.5, P0.6 and P0.7). A column of 10 LEds, representing elevator

is controlled through lower nibble of Port0 (P0.0, P0.1, P0.2 and P0.3). These

port lines are fed to the input of the decoder 7442 whose outputs are used to

control the ON/OFF status of the LEDs which simulate the motion of the

elevator.

Installation:

 The 26 pin connector is connected to J7 of Microcontroller module through

FRC cable.

 No external power supply is required as the needed power is taken through

FRC cable itself.

76

Program for Elevator

#include <REG51F.H>
void delay(unsigned int);

main()
{

unsigned char Flr[9] = {0xff,0x00,0x03,0xff,0x06,0xff,0xff,0xff,0x09};

unsigned char FClr[9] = {0xff,0x0E0,0x0D3,0xff,0x0B6,0xff,0xff,0xff,0x79};
unsigned char ReqFlr,CurFlr = 0x01,i,j;
P0 = 0x00;

P0 = 0x0f0;
while(1)

{
P1 = 0x0f;
ReqFlr = P1 | 0x0f0;

while(ReqFlr == 0x0ff)
ReqFlr = P1 | 0x0f0; /* Read Request Floor from P1 */

ReqFlr = ~ReqFlr;
if(CurFlr == ReqFlr) /* If Request floor is equal to Current

Floor */

{
P0 = FClr[CurFlr]; /* Clear Floor Indicator */
continue;

} /* Go up to read again */
else if(CurFlr > ReqFlr) /* If Current floor is > request floor */

{
i = Flr[CurFlr] - Flr[ReqFlr]; /* Get the no of floors to

travel */

j = Flr[CurFlr];
for(;i>0;i--) /*Move the indicator down */
{

delay(25000);
}

}
else /* If Current floor is < request floor */
{

i = Flr[ReqFlr] - Flr[CurFlr]; /* Get the no of floors to travel */
j = Flr[CurFlr];

for(;i>0;i--) /* Move the indicator Up */
{

P0 = 0x0f0 | j;

j++;
delay(25000);

}

}
CurFlr = ReqFlr; /* Update Current floor */

P0 = FClr[CurFlr]; /* Clear the indicator */
}

}

77

void delay(unsigned int x)
{

for(;x>0;x--);
}

Results / Conclusion :

The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:

1.

2.

3.

4.

Remarks:

1.

2.

3.

4.

Probable viva questions:

1.

2.

3.

4.

References:

1.

2.

3.

4.

Signature of staff incharge with date:

78

MICROCONTROLLER LABORATORY (ECL48)

PROBABLE/SUGGESTED QUESTION BANK FOR LAB EXAM

[1]. Data Transfer Programs – 8051 : Write an assembly language program
to transfer n = 10 bytes of data from location 8035h to location 8050h
(without overlap).

[2]. Data Transfer Programs – 8051 : Write an assembly language program

to exchange n = 5 bytes of data at Location 0027h and at location

0041h.

[3]. Arithmetic operation : Write an ALP to perform the following: If x = 0-
perform w + v;
Else if x = 1-perform w - v;

Else if x = 2-perform w * v;
Else if x = 3-perform w / v, where w & v are eight bit numbers.

[4]. Arithmetic operation : Write an assembly language program to sort an

array of n= 6 bytes of data in Descending order stored from location

9000h. (Use bubble sort algorithm).

[5]. Assembly Program Illustrating Logical Instructions (Byte Level) : 3

eight bit numbers X, NUM1 & NUM2 are stored in internal data RAM
locations 20h, 21h & 22H respectively. Write an ALP to compute the

following:
IF X=0; THEN NUM1 (AND) NUM2,
IF X=1; THEN NUM1 (OR) NUM2,

IF X=2; THEN NUM1 (XOR) NUM2,
ELSE RES =00,

STORE RES AT 23H LOCATION

[6]. Assembly Program Illustrating Logical Instructions (Byte Level) : 3

eight bit numbers X, NUM1 & NUM2 are stored in internal data RAM
Locations 20h, 21h & 22H respectively.
Write an ALP to compute the following:

IF X=0; THEN LSB OF NUM1 (AND) LSB OF NUM2,
IF X=1; THEN MSB OF NUM1 (OR) MSB OF NUM2,

IF X=2; THEN COMPLEMENT MSB OF NUM1
STORE THE BIT RESULT IN RES,
WHERE RES IS MSB OF 23H LOCATIONS

[7]. Counters program : Write an ALP to implement (display) an eight bit

up/down BCD counters on watch window.

[8]. Counters program : Write an ALP to implement (display) an eight bit

up/down BCD counters by using timer delay.

79

[9]. Conversion program : Write an ALP to implement decimal to hex

conversion.

[10]. Conversion program : Write an ALP to implement hex to decimal
conversion.

[11]. Serial data transmission with variable baud rate – 8051 : Write a
program illustrating serial ASCII data transmission (data-BHARAT).
Conduct an experiment to configure 8051 microcontroller to transmit

characters (BHARAT) to a PC using the serial port and display on the
serial window.

[12]. Perform an hardware experiment by implementing a DAC 0808

interface to 8051 to generate square waveforms.

[13]. Perform an hardware experiment by implementing a DAC 0808

interface to 8051 to generate triangular waveforms.

[14]. Perform an hardware experiment by implementing a DAC 0808

interface to 8051 to generate ramp waveforms.

[15]. Perform an hardware experiment to interface a stepper motor to the

8051 microcontroller.

[16]. Perform an hardware experiment to interface a DC motor to the 8051
microcontroller.

[17]. Perform an hardware experiment to interface an alphanumeric LCD
panel to the 8051 microcontroller.

[18]. Perform an hardware experiment to interface an ELEVATOR to the
8051 microcontroller.

80

81

82

83

84

85

86

NOTES

1. __

2. __

3. __

4. __

5. __

6. __

7. __

8. __

9. __

10. __

11. __

12. __

13. __

14. __

15. __

16. __

17. __

18. __

19. __

20. __

21. __

22. __

23. __

24. __

25. __

26. __

27. __

28. __

Vision of the Institute

 To impart quality technical education with a focus on Research and Innovation

emphasizing on Development of Sustainable and Inclusive Technology for the benefit of

society.

Mission of the Institute

 To provide an environment that enhances creativity and Innovation in pursuit of

Excellence.

 To nurture teamwork in order to transform individuals as responsible leaders and

entrepreneurs.

 To train the students to the changing technical scenario and make them to understand the

importance of sustainable and inclusive technologies.

Vision of the ECE Department

 To achieve continuous improvement in quality technical education for global competence

with focus on industry, societal needs, research and professional success.

Mission of the ECE Department

 Offering quality education in Electronics and Communication Engineering with effective

teaching learning process in multidisciplinary environment.

 Training the students to take-up projects in emerging technologies and work with team

spirit.

 To imbibe professional ethics, development of skills and research culture for better

placement opportunities.

DEPARTMENT

OF
ELECTRONICS & COMMUNICATION ENGINEERING

	Sem 4 2018-19 MC LM.pdf
	4 Sem MC Cover Page.pdf
	4 Sem MC Lab Manual.pdf

	4 Sem MC Cover Page.pdf

