Dayananda Sagar
College of Engineering

DEPARTMENT

OF
ELECTRONICS & COMMUNICATION ENGG

MICRO CONTROLLER LAB MANUAL
IC LAB

IV Semester (17EC4DLMCR)
Autonomous Course
2018-19

. I l! i

R tane

Name of the Student

Semester /Section

USN

Batch

Dayananda Sagar College of Engineering

Shavige Malleshwara Hills, Kumaraswamy Layout,

Banashankari, Bangalore-560078, Karnataka
Tel : +91 80 26662226 26661104 Extn : 2731 Fax: +90 80 2666 0789
Web - http:/ /www.dayanandasagar.edu Email : hod-ece@dayanandasagar.edu

(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by NBA, National Assessment & Accreditation Council (NAAC) with 'A' grade)

Dayananda Sagar
College of Engineering

DEPARTMENT
OF
ELECTRONICS & COMMUNICATION ENGINEERING

MICROCONTROLLER LAB MANUAL
IV Semester (17EC4ADLMCR)
Autonomous Course
2018-2019

Dr. T.C. Manjunath & Dr. M. Roopa
Vibha T.G.,Mahima U,Chaitra A
H.S. Veena,Nutesh S

Name of the Student

Semester /Section

USN

Batch

Dayananda Sagar College of Engineering
Shavige Malleshwara Hills, Kumaraswamy Layout,

Banashankari, Bangalore-560078, Karnataka
Tel : +91 80 26662226 26661104 Extn : 2731 Fax: +90 80 2666 0789

Web - http://www.dayanandasagar.edu Email : hod-ece@dayanandasagar.edu
(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by NBA, National Assessment & Accreditation Council (NAAC) with 'A' grade)

1

Dayananda Sagar College of Engineering

Dept. of E & C Engg

Name of the Laboratory

Semester/Year
No. of Students/Batch
No. of Computers

Major Equipment’s

Operating System &
Application

Area in square meters
Location
Total Cost of Lab

:Microcontroller Lab / 17ECADLMCR
: IV/2018-2019 (Autonomous)

20
30

Dell Computers
Microcontroller Board
DSP TMS320 Kit

Dc Motor Interface
Elevator Interface

Dual DAC interface
Stepper Motor Interface
Logic Controller Interface
Digital Oscilloscope
Power Supply

+Sv, £12v, £ 30v

Windows 8.1, UPS
Keil Micro Vision,

Hardware pC interfacing kits
Matlab 2014, CC Studio-V

104 Sq mts
Level — 3
Rs. 15,00,000/-

Lab Incharge/s: Dr. Prof. M. Roopa

Prof. Vibha T.G.
Prof. Mahima U
Prof. Chaitra A

Instructor : Mrs. H.S. Veena, Mr Nuthesh
HOD : Dr. T.C. Manjunath, eno. @r Bombay)

About the college & the department
The Dayananda Sagar College of Engineering was established in
1979, was founded by Sri R. Dayananda Sagar and is run by the
Mahatma Gandhi Vidya Peetha Trust (MGVP). The college offers
undergraduate, post-graduates and doctoral programmes under
Visvesvaraya Technological University & is currently autonomous
institution. MGVP Trust is an educational trust and was promoted
by Late. Shri. R. Dayananda Sagar in 1960. The Trust manages 28
educational institutions in the name of “Dayananda Sagar
Institutions” (DSI) and multi — Specialty hospitals in the name of
Sagar Hospitals - Bangalore, India. Dayananda Sagar College of
Engineering is approved by All India Council for Technical
Education (AICTE), Govt. of India and affiliated to Visvesvaraya
Technological University. It has widest choice of engineering
branches having 16 Under Graduate courses & 17 Post Graduate
courses. In addition, it has 21 Research Centres in different
branches of Engineering catering to research scholars for
obtaining Ph.D under VTU. Various courses are accredited by NBA
& the college has a NAAC with ISO certification. One of the vibrant
& oldest dept is the ECE dept. & is the biggest in the DSI group
with 70 staffs & 1200+ students with 10 Ph.D.’s & 30+ staffs
pursuing their research in various universities. At present, the
department runs a UG course (BE) with an intake of 240 & 2 PG
courses (M.Tech.), viz., VLSI Design Embedded Systems & Digital
Electronics & Communications with an intake of 18 students each.
The department has got an excellent infrastructure of 10

sophisticated labs & dozen class room, R & D centre, etc...

Vision and Mission of the Institute:
Vision:
% To impart quality technical education with a focus on Research and

Innovation emphasizing on Development of Sustainable and Inclusive

Technology for the benefit of society.

Mission:
% To provide an environment that enhances creativity and Innovation in

pursuit of Excellence.

% To nurture teamwork in order to transform individuals as responsible
leaders and entrepreneurs.

% To train the students to the changing technical scenario and make them
to understand the importance of sustainable and inclusive

technologies.

Vision and Mission of the Department
Vision :
% To achieve continuous improvement in quality technical education for

global competence with focus on industry, societal needs, research and

professional success.

Mission:
% Offering quality education in Electronics and Communication
Engineering with effective teaching learning process in
multidisciplinary environment.

% Training the students to take-up projects in emerging technologies and
work with team spirit.

% To imbibe professional ethics, development of skills and research

culture for better placement opportunities.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

After four years, the students will be

PEO1: ready to apply the state-of-art technology in industry and meeting the
societal needs with knowledge of Electronics and Communication
Engineering due to strong academic culture.

PEO2: competent in technical and soft skills to be employed with capability
of working in multidisciplinary domains.

PEO3: professionals, capable of pursuing higher studies in technical,

research or management programs.

PROGRAM SPECIFIC OBJECTIVES (PSOs):
Students will be able to

PSO1: Design, develop and integrate electronic circuits and systems using
current practices and standards.
PSO2 : Apply knowledge of hardware and software in designing Embedded

and Communication systems.

Course Objectives

1. To provide knowledge on fundamental concepts of 8051.

2. To provide understanding of assembly language programming concepts and improve the
programming skill.

3. To familiarize students with Kiel software.
4. To familiarize students with different sets of instructions available for programming.
5. To give exposure on interfacing concepts using C language with different peripherals.

6. To provide foundation for developing 8051 based applications.

Course Outcomes

After the completion of this laboratory the students will have the ability to

COo1

Employ the knowledge of 8051 architecture & memory organization, for writing
assembly language programs using Kiel software.

CO2

Apply the assembly language programming skills to build ALPs for arithmetic
& logical operations.

CO3

Analyze & code for timers, serial communication & interrupts.

CO4

Use hardware kit and various peripherals to analyze hardware interfacing.

CO5

Apply embedded C programming skills to develop programs for hardware
interfacing.

CO6

Demonstrate simulated hardware programs on 8051 kit interfaced with various
peripherals.

Mapping of Course outcomes to Program outcomes

PO1

PO2 | PO3 | PO4 | POS | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1

PSO2

CO1

CO2

CO3

CO4

CO5

CO6

WIWlwWw w| w|w

W W ININIDNIDN

1

1

1

1

1

1
L L
L L

1

1

1

CO
AVG

PR

MICRO-CONTROLLER LAB

Course code : 17ECADLMCR

Credits: 2
L:P:T:S:1:2:0:0 CIE Marks: 50
Exam Hours : 3 SEE Marks: 50
Expt \ Course Content \ Hours \ COs
Software Programs : ALP simulation programs on 8051
Data Transfer Programs — 8051 : co1
1. a. Block data transfer without overlap 03 Co2
b. Block exchange.
Arithmetic operation :
a. Addition, subtraction, multiplication and Co1
2. 03 C02
division of two 8 bit numbers.
b. Bubble Sorting algorithm.
Bit manipulation, Boolean & Logical Instructions
rograms :
pros Co1
3. a. To perform logical operation on two 8 bit 03 C0o2
numbers.
b. Conditional bitwise logical operations.
Counters : Co1
4. a. BCD counter using software delay. 03 80023
b. Hex counter using timer delay of 1 sec.
Conversion: 8051
Co01
5. a. HEX- Decimal 03 Co2
b. Decimal - HEX
Serial data transmission with variable baud rate — Co1
6. 03 | CO2
8051. CO3

Hardware programs to interface 8051 chip to Interfacing modules

7.

Implementation of DAC 0808 interface to 8051 to

generate square, triangular, ramp waveforms.

03

Co04
C05
C0o6

Stepper motor interface to 8051.

03

C0o4
CO05
Co06

DC motor interface to 8051.

03

Co04
C05
C06

10.

Alphanumeric LCD panel interface to 8051.

03

C04
C05
C06

11.

Elevator interface to 8051.

03

Co4
C05
C0o6

Cycle of experiments

No. Title Page

No
CYCLE -1
ALP programs on 8051
1 Data Transfer Programs — 8051. 27
2 | Arithmetic operation. 32
3 Bit manipulation, Boolean & Logical Instructions 37
programs.
4 Counters programs. 41
S Conversion. 46
6 | Serial data transmission with variable baud rate — 8051. 49
CYCLE - 2
C programs to interface 8051 chip to Interfacing
modules
7 Implementation of DAC 0808 interface to 8051 to generate 54
square, triangular, ramp waveforms.

8 Stepper motor interface to 8051. 61
9 | DC motor interface to 8051. 66
10 | Alphanumeric LCD panel interface to 8051. 69
11 | Elevator interface to 8051. 73

DO’s

All the students should come to LAB on time with proper dress code and
identity cards.

Keep your belongings in the corner of laboratory.

Students have to enter their name, USN, time-in/out and signature in the
log register maintained in the laboratory.

All the students should submit their records before the commencement of
Laboratory experiments.

Students should come to the lab well prepared for the experiments which
are to be performed in that particular session.

Students are asked to do the experiments on their own and should not
waste their precious time by talking, roaming and sitting idle in the labs.
Observation book and record book should be complete in all respects and
it should be corrected by the staff member.

Before leaving the laboratory students should arrange their chairs and
leave in orderly manner after completion of their scheduled time.

Prior permission to be taken, if for some reasons, they cannot attend lab.
Immediately report any sparks/ accidents/ injuries/ any other untoward
incident to the faculty /instructor.

Once the experiment is completed in all respects, students should take
the sign of the staff / lab incharge & before coming to the next lab, the
practical record should be written & complete in all respects, else, marks
will be reduced as the record will be incomplete.

In case of an emergency or accident, follow the safety procedure.

Switch OFF the power supply after completion of experiment.

10

DONT’s
Do not make noise in the Laboratory & do not sit on experiment table.
Do not make loose connections and avoid overlapping of wires
Don’t switch on power supply without prior permission from the
concerned staff.
Never leave the experiments while in progress.
Do not leave the Laboratory without the signature of the concerned staff
in observation book.
Do not switch on the power supply before verification of the connected
circuits by concerned staff.
Do not feed higher voltages than rated to the device.
Do not upload, delete or alter any software on the laboratory PC’s.
Do not write or mark on the equipment’s.
Usage of mobile phone is strictly prohibited.
Ragging is punishable.
If student damages the equipment or any of the component in the lab,
then he / she is solely responsible for replacing that entire amount of the

equipment or else, replace the equipment.

11

INTRODUCTION
TO
MICRO-CONTROLLER
&

ITS ARCHITECTURE
INSTRUCTION SETS

12

BREIF INTRODUCTION ABOUT THE 8051 MICRO-CONTROLLER

Arithmetic Special. P o 10
and PSW Function 2 e AQ-A7
Logic Unit Registers — 3 E — D0-D7
RAM
i é 8-8it Data and e
A e) | fhe
ddress Bus §lLd3:Fw
l l I - a b
DPTIR
PC DPH ROM -
DPL £ I w
= pe— — .
] 3 3 [AS:ALS
16.Bit Acress Bus 2
b— vo
o Special. p- o = Interrupt
EA "4 System Syle/Bjt Function i—.l 8 I~ Counter
ALE — Timing Addresses Registers 3 § I~ Serial Data
PSEN ~ I~ RD-WR
XTAL) —{ System Register € |
XTALZ — '"T'lf-r:up's Bank 3 P I
RESET — ers PCON I
Data Byffers SBUF
Ve — Register
oD] eIt Bank 2 SCON |
I TCON |
l Register ™O0D |
Bank 1 TLO I
| THO
| Register T8 |
%
) Bank 0 ™ |
' v Internal RAM Steycture l
1 I
e o - ———— - ——— S ————— — - 4

8051 Architecture:
Architecture shows usual CPU components such as Program counter (PC),

ALU, working registers and clock circuits.

Features:

* 8 bit CPU with registers A (Accumulator) & B

* 16 bit program counter (PC) and Data pointer (DPTR).
* 8 bit Program status word (PSW).

* 8 bit stack pointer.

* Internal ROM of 4kbytes.

* Internal RAM of 128 bytes.

* 4 register banks each containing 8 registers.

* 16 bytes of bit addressable registers.

* 8 bytes of general purpose data memory.

e 32 1/0 pins arranged in four 8 pin ports (PO to P3).
e Two 16 bit Timer/Counter (TO & T1).

e Full duplex serial data receiver / transmitter (SBUF).

13

* Control registers, TCON, TMOD, SCON, PCON, IP & IE.
* 2 external & 3 internal interrupt source.

¢ Oscillator and clock circuits.

Port18ito |1 P1.O U Ve a0 | +5v
Port1Bitl | 2 Pl1.] (ADOYPO.O 39 | Port OBItO
(Address/Data 0)
Port 1 Bit 2 3 PlL2 (AD1)PO.1 38 | Port OBt}
(Address/Data 1)
Port18Bit3 | 4 PL3 (AD2)PO.2 37 | Port ORIt 2
(Address/Data 2)
Port 1 Bitda | 5 PlLA (AD3)PO.3 36 | PortOBIt3
(Address/Data 3)
Port 1 BitS | 6 PLS (AD4)PO.4 35 | Port0BIt4
(Address/Data 8)
pon18ite | 7 P16 (ADSIPO.5 34 | PortOBIt S
(Address/Data 5)
Port 1 Bit7 8 PL7 (AD6)PO.6 33 | PortOBit6
(Agdress/Data 6)
Reset input 9 RST (AD7YPO.7 32 | PortOBit7
(Address/Data 7)
Port3BitO | 10 P3.O(RXD) (Vpp)/EA 3] | External Enable
{Receive Data) (EPROM Programming Voltage)
Port3Bitl } 11 P3.UTXD (PROGALE 30 | Address Lalch Enable
(XMIT Data) {EPROM Program Pulse)
Port3Bit2 | 12 P3. 2(UNTO) PSEN 29 | Program Store Enable
(Interrupt 0)
Part 3 Bit 3 13 P3.3(0NTI) (A15)P2.7 28 | Port 2Bt 7
(Interrupt 1) (Address 15)
Port 3 Bit 4 14 PAA(TO) (A1a)P2.6 27 | Port 2Bit6
(Termar O Input) (Address 14)
Port 3Bit 5 15 P3.5(TNH (A13)P2.5 26 | Poct2Bit S
(Timer 1 input) {Address 13)
Port3Bit6 | 16 P3.6(WR) (A12)P2.4 25 | Port2Bit4
(Write Strobe) (Address 12)
Port 3Bit 7 17 PS.?(E) {A11)P2.3 24 | Port 2Bit3
{Read Strobe) (Address 11)
Crystal Input 2 | 18 XTAL2 (A10)P2.2 23 | Port2Bit 2
{Address 10}
Crystal Input 1 19 xTALL (A9)P2.1 22 | Part 28it 1
(Address 9)
Ground 20 Vss (AB)P2.0 21 | Port 2Bit0Q
(Address 8)

Note: Alternate functions are shown below the port name (in parentheses). Pin num-
bers and pin names are shown inside the DIP package

DIP pin assignments:

It is a 40 pin IC, where 32 pins are used for 4 ports, PO,P1,P2,P3 (each of 8
pins). The rest of the pins are Vcc, Gnd,XTAL1, XTAL2, RST, EA (Low enable),
PSEN (Lew enable) & ALE.

Port O: It is 8 pins (32 to 39) port which can be used as input or output. To
use it as both I/O pins, each pin must be connected externally to 10k-ohm
pull up resistor as these pins are open drain unlike other ports. 8051
multiplexes address and data through portO to save pins hence this port can

be used as both address and data port (AdO-AD7).

14

Port 1: 8 pins (1 to 8) port with internal pull up resistors. On reset it is

configured as input port (all pins 1).

Port 2: 8 pins (21 to 28) port with internal pull up resistors. On reset it is
configured as input port (all pins 1). This port is used as address pins while
interfacing external memory of 64kB. PO provides lower 8 bit address and P2

provides higher 8 bits of address but P2 is not multiplexed.

Port 3: 8 pins (10 to 17) port with internal pull up resistors. On reset it is
configured as input port (all pins 1). P3 has the additional function of

providing some important signals such as interrupts as shown in pin diagram.

Pin 18 & 19: External oscillator pins XTAL1 & XTAL2. 8051 has an on chip
oscillator but requires external clock to run it. A quartz crystal oscillator is
connected to XTAL1 & XTAL2. If TTL oscillator is used then, it is connected to
XTAL1 and XTAL?2 is left open.

Pin 9: Reset pin RST. It is an input and active high pin. On reset

microcontroller terminates all activities.

Pin 29: Program store enable is low enable pin PSEN. This pin should be

connected to OE pin of ROM chip when external memory is interfaced.

Pin 30: Address latch enable pin ALE. It is an output pin and active high.
Used for de-multiplexing the address and data by connecting to the G pin of
74LS373 chip.

Pin 31: External access pin which is active low EA. Connected to V¢ for on

chip ROM access and should be connected to Gnd while accessing external

memory.

15

Internal RAM Organization
Lower 128 Bytes of RAM

Byte
Addresses
7F
General purpose RAM (Scratch pad)
30
2F 7F | 7TE | 7D | 7C | 7TB | 7TA | 79 78
2E 77 | 76 | 75 | 74 | 73 | 72 | 71 70
2D 6F | 6E | 6D | 6C | 6B | 6A | 69 68
” 2C 67 | 66 | 65 | 64 | 63 | 62 | 61 60
§ 2B 5F | 5E | 5D | 5C | 5B | 5A | 59 | 58
@ 2A 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50
,S 29 4F | 4E | 4D | 4C | 4B | 4A | 49 48
% 28 47 | 46 | 45 | 44 | 43 | 42 | 41 40
§ 27 3F | 3E | 3D [3C | 3B | 3A | 39 | 38
L 26 37 |36 | 35 | 34 | 33 | 32 | 31 30
§ 25 2F | 2E | 2D [2C | 2B | 2A | 29 | 28
p 24 27 | 26 | 25 | 24 | 23 | 22 | 21 20
M 23 1F | 1IE | 1D | 1C | 1B | 1A 19 18
22 17 | 16 15 14 13 12 11 10
21 OF | OE | OD | OC | OB | OA | 09 08
20 07 | 06 | 05 | 04 | 03 | 02 | O1 00
18 - 1F Bank 3
10-17 Bank 2
08 - OF Bank 1
00 - 07 Bank O (Default Register bank RO — R7)

16

128 Bytes of Special Function Registers (SFR)

Byte } SFR
Bit A

Addresses it Addresses Name
FF
FO F7 | F6 | F5 | F4 | F3 | F2 | F1 | FO B
EO E7 |E6 | E5 | E4 | E3 | E2 |E1 | EO| ACC
DO D7 | D6 | D5 | D4 | D3| D2 | D1 |D0| PSW
B8 - - - BC | BB | BA | B9 | B8 IP
BO B7 |B6 | B5| B4 | B3| B2|B1|BO P3
A8 AF | - - |AC | AB| AA | A9 | A8 IE
AO A7 | A6 | A5 | A4 | A3 | A2 | A1 | AO P2
99 Not bit addressable SBUF
98 Of | 9¢ | 9d | 9¢c | 9b | 9a | 99 | 98 | SCON
90 97 196 | 95194 |93 |92 |91 | 90 P1
8D Not bit addressable TH1
8C Not bit addressable THO
8B Not bit addressable TL1
8A Not bit addressable TLO
89 Not bit addressable TMOD
88 8F |8E |8D | 8C | 8B | 8A | 89 | 88 | TCON
87 Not bit addressable PCON
83 Not bit addressable DPH
82 Not bit addressable DPL
81 Not bit addressable SP
80 87 18 | 85|84 | 83 |82 |81 | 80 PO

17

Special Function Register (SFR) Addresses

Symbol Name Address
ACC* Accumulator OEOH
B* B Register OFOH
PSW* Program Status World ODOH
SP Stack Pointer 81H
DPTR Data Pointer 2 bytes

DPL Low byte 82H
DPH High byte 83H
PO* Port O 80H
P1* Port 1 90H
p2* Port 2 OAOH
P3* Port 3 OBOH
Ip* Interrupt Priority Control OB8H
[E* Interrupt Enable Control OA8H
TMOD Timer / counter mode control 89H
TCON* | Timer / counter control 88H
T2CON* | Timer / counter 2 control OC8H
T2MOD | Timer / counter mode control OC9H
THO Timer / counter O high byte 8CH
TLO Timer / counter O low byte 8AH
TH1 Timer / counter 1 high byte 8DH
TL1 Timer / counter 1 low byte 8BH
TH2 Timer / counter 2 high byte OCDH
TL2 Timer / counter 2 low byte OCCH
RCAP2H | T/C 2 capture register high byte OCBH
RCAP2L | T/C 2 capture register low byte OCAH
SCON* | Serial control 98H
SBUF Serial data buffer 99H
PCON Power Control 87H

* Bit-addressable

18

Jump Instruction Ranges
Memory Address (HEX)

F S — T — — — VR WD, WA, T—
i LADD Limit

|

I RS ——— 1

SADD Limit

Next Page

U Rr——.

| B Jumps

| . AJMP
PC Next Opcode __[.‘!C%SE___._'.______:
Jump Opcode | oiNz B | '
| %2 Jumps | I
l INZ l l
PC - 128d | Relative Limit jp=— SIMP : I
| I
— | |
This Page | SADOUmt | o e J |
|
|
l
l
- |
0000 LADD Limit T S PN S S _J

19

LIMP

Alphabetical List of Instructions

ACALL - Absolute Call

ADD, ADDC - Add Accumulator (With Carry)
AJMP - Absolute Jump

ANL - Bitwise AND

CJNE - Compare and Jump if Not Equal
CLR - Clear Register

CPL - Complement Register

DA - Decimal Adjust

DEC - Decrement Register

DIV - Divide Accumulator by B
DJNZ - Decrement Register and Jump if Not Zero
INC - Increment Register

JB - Jump if Bit Set

JBC - Jump if Bit Set and Clear Bit
JC - Jump if Carry Set

JMP - Jump to Address

JNB - Jump if Bit Not Set

JNC - Jump if Carry Not Set

JNZ - Jump if Accumulator Not Zero
JZ - Jump if Accumulator Zero
LCALL - Long Call

LJMP - Long Jump

MOV - Move Memory

MOVC - Move Code Memory

MOVX - Move Extended Memory
MUL - Multiply Accumulator by B
NOP - No Operation

ORL - Bitwise OR

POP - Pop Value From Stack

PUSH - Push Value Onto Stack

RET - Return From Subroutine

RETI - Return From Interrupt

20

RL - Rotate Accumulator Left

RLC - Rotate Accumulator Left Through Carry
RR - Rotate Accumulator Right

RRC - Rotate Accumulator Right Through Carry
SETB - Set Bit

SJMP - Short Jump

SUBB - Subtract From Accumulator With Borrow
SWAP - Swap Accumulator Nibbles

XCH - Exchange Bytes

XCHD - Exchange Digits

XRL - Bitwise Exclusive OR

Undefined - Undefined Instruction

21

INTRODUCTION
PROCESSOR used is Atmel AT89CS51ED2 - Micro controller that has
64Kbytes of on-chip program memory. It is a version of 8051 with enhanced

features. AT 89C51ED2 operates at 11.0592 MHz

PROCESSOR FEATURES :

ON-CHIP MEMORY :

CODE MEMORY : 64 KBytes of flash.

DATA MEMORY : 256 Bytes of RAM, 1792 Bytes of XRAM, 2K Bytes of
EEPROM.

ON-CHIP PERIPHERALS : 2 16-bit Timers/Counters, Watch Dog Timer,
Programmable Counter Array (PCA) on Portl i.e. PWM and Capture &
Compare, SPI (Serial Peripheral Interface) on Portl, Full duplex enhanced

UART.
INTERRUPTS : Nine sources of interrupt (both external and internal).
Two External interrupts INTO and INT1 are provided with push button

switches; these can also be used as general-purpose switches.

I/O (Port) Lines : Four 10-pin connectors for all the 32 I/O lines. PO, P1

and P2 Port lines are available on a 26-pin connector.

16X2 LCD & SERIAL I/O : are also available.

22

BLOCK DIAGRAM PC with

{ S
64K Bytes
Ll 224 " Flash memory

((NOTOPR—— |
P07 >

256 Byte RAM
1792 byte XRAM
= 2048 bytes EEPROM

~J -~

uC

KEIL uVision
[\J\ET—' e | RS-232 |
N——| sHiFTer [So—!
< o7 >
P07 >

ATROCSIEDYRD2

Creating and compiling a pVision5 project (8051 ALP Programs)

A

s tistons

. Double Click on the pVisionS icon on the desktop.

. Close any previous projects that were opened using — Project->Close.

3. Start Project — New Project, and select the CPU from the device database
(Database-Atmel- AT89CS1ED?2). (Select AT89CS1ED2 or AT89C51RD2 as
per the board).On clicking ‘OK’, the following option is displayed. Choose

No.

Copy Standard 8051 Starktup Code to Project Folder and Add File o Project ¢

Yes

[} |

4. Create a source file (using File->New), type in the assembly or C program

and save this (filename.asm/ filename.c) and add this source file to the

project by right clicking on the Source Group in the Project Window and

the Add Files to group option.

e —

Project Workspace

—-#4 Target 1
Source Group 1

¥ oo -

STARTUR.AS1

23

5. Build the project; using Project -> Build Project. uVision translates all the
user application and links. Any errors in the code are indicated by — “Target
not created” in the Build window, along with the error line. Debug the

errors. After an error free build, go to Debug mode.

*|Build target 'Target 1'

assembling STARTUP.AS1. ..

assembling BLEMOV . ASM. ..

BLEMOV . ASM(10) : error A45: UNDEFINED SYMBOL (PASS-2)
Target not created

| | |'-. Buildl.-'{.l Command :-'-.IFind in Files I.-"

6. Now user can enter into Debug mode with Debug- Start / Stop Debug

Cutput Window

session dialog. Or by clicking in the @ icon.

7. The program is run using the Debug-Run command & halted using Debug-

= | =
Stop Running. Also the FT =l (reset, run, halt) icons can be used.
. : T . :
Additional icons are (step, step over, step into, run till cursor).
NOTE:

1. If it is an ALP program, the appropriate memory window is opened using
View -> memory window (for data RAM & XRAM locations),
Watch window (for timer program), serial window for serial data
transmission.
To access data RAM area type address as D:0020h.
Similarly to access the DPTR region (XRAM-present on chip in
AT89CS51ED?2) say
9000h location type in X:09000H.
To access the code memory type address as C:0020h.

2. If it is an interface program an extra step has to be followed before step 5
as illustrated for ALP programs to see the outputs on the LCD, CRO, motor,
led etc.

Set the Target options using -> Project — Options for Target opens the

pVision3 Options for Target — Target configuration dialog. Set the Xtal

24

frequency as 11.0592 Mhz, and also the Options for Target — Debug — use

either Simulator / Keil Monitor- 51 driver.

Options for Target "Target 1’

Device | Target | Output | Listing| C51 | A5T | BLS1 Locate | BLS1 Mise Debug | Utities |
¢ Use Smulator Seltings | ¢ Use [KeﬂMoMoc-51 Drives _:J Setlings I

IV Load Application at Startup v Run to man() ¥ Load Application at Statup ™ Run to man{)

If Keil Monitor- 51 driver is used,

Click on run to main() option. Then click on Settings -> COM Port
settings

Select com port to which the board is connected and select the baud rate
as 9600

Enable Serial Interrupt option.

If Simulator is used,

Go to view click on analysis window select logic analyzer to see the

waveforms.

25

Software
(Programming)
Experiments

26

| Experiment No. : 1 Date: [/ /

DATA TRANSFER PROGRAMS

Aim 1 : a) Write an assembly language program to transfer n = 10 bytes of

data from location 8035h to location 8050h (without overlap).

Algorithm :

1. Initialize origin of program at OOOOH.

2. Jump to 30H and initialize origin at 30H.

3. Initialize registers to hold count & also the source & destination
addresses of code memory.
Load lower byte of address into DPL register.
Get data from source location into accumulator.

Move destination address into DPL register.

Increment source and destination addresses.

4
5

6

7. Transfer data to the destination location.

8

9. Decrement the counting register and check if it has reached Zero.
1

0. Repeat step 5 to 9 till count is zero.

Note : For data transfer with overlap start transferring data from the last

location of source array to the last location of the destination array.

Program :
Label Mnemonic/ Comments
Operands

ORG 0000H / /Origins program from 0000H location
SJMP 30H / /Unconditional jump to 30H
ORG 30H / /Program starts from 30H
MOV DPH,#80H / /Higher byte of address is stored in DPH
MOV RO,#35H / /Lower byte of source address
MOV R1,#50H / /Lower byte of destination address
MOV R3,#0AH / /count- Number of bytes to be transferred

BACK: | MOV DPL, RO / /DPTR stores complete source address
MOVX A,@DPTR / /Read content at source address
MOV DPL, R1 //Update DPTR with destination address
MOVX @DPTR,A / /Write data at destination
INC RO / /Increment source address lower byte
INC R1 / /Increment destination address lower byte
DJNZ R3, BACK / /Decrement R3 & jump to BACK if its not Zero

HERE: | SOMP HERE / /Infinite looping
END / /End directive

27

RESULT :

Before Execution : 10 locations X:8035h are filled up with data.

x
4

Address: |:-:;BI:|35H

:0x008035: 45 00 78 32 54 7o BY 93 55 89
3 :0x00803F: 00 0O OO 00O 00 00 00 o0 0o oo
:0x008049: 00 OO OO OO OO OO OO OO0 OO0 oo
g}l :0x008053: 00 OO0 OO OO OO OO OO OO0 OO OO0

After Execution : 10 locations X: 8050h are filled up with data from 8035h.

Address: |H:E!I:|35H

:0x008035: 45 00 768 32 54 76 67 93 55 89
:0x00803F: 00 00 OO OO OO OO OO OO OO OO0
:0x008049: 00 00 OO OO OO0 00 00O 45 00 78
:0x008053: 32 54 76 67 93 55 B9 00 00 OO0

Ea el el e L a R e N B e e B e E e B e ke B e e B e E e N e P B e P B e e B e

Aim 2 : b) Write an assembly language program to exchange n = 5 bytes of

data at Location 0027h and at location 0041h.

Algorithm:

1. Initialize origin of program at O0O0O0H.
Jump to 30H and initialize origin at 30H.
3. Initialize registers to hold count data & also the source & destination
addresses.
4. Initialize registers to hold count (array size) & also the source &
destination addresses.
Get data from source location into accumulator and save in a register.
Get data from the destination location into accumulator.
Exchange the data at the two memory locations.

Increment source and destination addresses.

© ® N o »

Decrement the counting register and check if it has reached Zero.

10. Repeat from step S to 9 till count is zero.

28

Alter using XCH command

Algorithm:

1. Initialize origin of program at OOOOH.

2. Jump to 30H and initialize origin at 30H.

3. Initialize registers to hold count data & also the source & destination

addresses.

4. Initialize registers to hold count (array size) & also the source & destination

addresses.
5. Get data from source location into accumulator and save in a register.
6. Exchange data using XCH command.
7. Increment source and destination addresses.
8. Decrement the counting register and check if it has reached Zero.
9. Repeat from step 5 to 8 till count is zero.
Program
Without XCH command With XCH command
Label Mnemonic/ Comments Label Mnemonic/ Comments
Operands Operands
ORG 0000OH ORG 000OH
SJMP 30H SJMP 30H
ORG 30H ORG 30H
MOV RO,#27H MOV RO,#27H
MOV R1,#41H MOV R1,#41H
MOV R3,#05H MOV R3,#05H
BACK: | MOV A,@RO BACK: | MOV A,@RO
MOV R2,A XCH A,@R1
MOV A,@R1 MOV @RO,A
MOV @RO,A INC RO
MOV A, R2 INC R1
MOV @R1,A DJNZ R3, BACK
INC RO HERE: | SOMP HERE
INC R1 END
DJNZ R3, BACK
HERE: | SUMP HERE
END

29

RESULT:

Before Execution : 5 locations at X:0027h & X:0041h are filled up with

data.
Memory 1 R x|
"
Address: |D:27H L
D:0x27: 25 2& 27 28 29 00 00 Q00 OO0 OO0 OO0 OO0 OO OO0
D:0x35: 00 OO0 OO0 OO0 OO0 OO0 OO0 Q0 00 00 OO0 00 34 4F
D:0x43: 50 70 FF 00 00 OO0 OO0 QOO0 OO0 OO0 Q0 00 OO0 00
D:0x51: 00 OO OO OO OO OO OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0
D:0x5F: 00 OO0 OO OO OO OO OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0
D:0xeD: OO0 OO OO OO QOO OO OO OO0 OO0 OO0 OO0 00 OO0 OO0

After Execution : The data at X:8027h & X:8041h are exchanged.

Memory 1 i |
~
Address: |D:27H
D:0x27: 3L 4F 50 70 FF 00 OO0 Q00 OO0 OO0 00 OO OO0 00
D:0x35: 00 00 OO OO OO OO OO OO0 OO0 OO0 OO0 00 25 2Zg
D:0x43: 27 28 292 00 00 OO0 OO0 OO0 OO OO OO0 OO OO 00
D:Ox51: 00 OO0 OO OO OO OO OO OO0 OO0 OO0 OO OO0 00 00
D:0x5F: 00 OO0 OO QO OO OO OO OO0 OO0 OO OO OO0 00 00
D:0x=xeD: OO0 OO0 OO OO OO OO OO OO0 OO0 OO0 OO OO0 00 00

Results / Conclusion :
The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:
1.

2
3.
4

Remarks:

nal A

30

Probable viva questions:
1.

2

3.

4
References:
1.

2

3.

4

Signature of staff incharge with date:

31

| Experiment No. : 2

Date :

ASSEMBLY LANGUAGE PROGRAM ILLUSTRATING ADDITION,
SUBTRACTION, MULTIPLICATION AND DIVISION

ARITHMETIC OPERATIONS

Aim 1 : a) Write an ALP to perform the following:

If x = O-perform w + v;

Else if x = 1-perform w - v;

Else if x = 2-perform w * v;

Else if x = 3-perform w / v, where w & v are eight bit numbers.

Algorithm:

1. Store the condition x in R1.

2. Load the first and second numbers to A and B registers respectively

3. Compare the contents of R1 and perform the operations add, sub, etc

accordingly.

4. Store the result present in A and B registers to the appropriate memory

locations.

Program:

Label

Mnemonic/Operands

Comments

SKIP:
CKSUB:

ORG 0000H
SJMP 30H
ORG 30H
MOV RO, #40H
MOVX A,@RO
MOV R1, A
INC RO

MOVX A,@RO
MOV B, A

INC RO

MOVX A,@RO
CJNE R1,#00,CKSUB
ADD A,B

MOV B,#00
JNC SKIP
MOV B,#01H
SJMP LAST
CJNE R1,#01,CKMUL
CLR C

SUBB A,B
MOV B,#00
JNC SKIP1

32

MOV B,#0FFH
SKIP1: | SUMP LAST

MUL AB
SJMP LAST

DIV AB

SJMP LAST
OTHER: | MOV A,#00
MOV B,#00
LAST: | INC RO
MOVX @RO,A
INC RO

MOV A,B
MOVX @RO,A
HERE: | SUMP HERE
END

CKMUL: | CJNE R1,#02,CKDIV

CKDIV: | CJNE R1,#03,0THER

RESULT:

Before Execution: ADD

‘ Address: |><:E|I]4E|

£:0x000020: 00 00 00 00 00 00 0o 0o
£:0x000030: 00 00 00 00 00 00 0o 0o
£:0x000040: 00 10 20 00 00 00 00 0o

After Execution: ADD

oo
oo
oo

Before Execution: SUB

Address: |><:IIIEI¢1EI

E:0x0000Z0: 00 00 0o 00 o o0 oo
L:0x000030: 00 00 0o 00 ad o0 oo
Z:0x000040: 01 10 20 00 00 00 oo

After Execution: SUB

Address: |><:I:|I:|4E|

Address: |><:I:IEI4EI

H:0x0000Z0: 00 0o 00 0o ao 0d oo
X:0x000030: Q0 0o 00 0o ao 0d oo
K:0x000040: 00 10 20 30 0o 00 00

Before Execution: MUL

oa
oa
oa

X:0Ox0O0O0O0z0O: 00 00 0o 00 00 oo oo
X:0x=x000030: 00 00 oo 00 ad oo oo
X:i0x000040: 01 10 20 10 0o o0 oo

Address: |><: o040

X:0x000020: 00 00 o0 oo o0 oo
L:0x000030: 00 00 a0 0o ao oo
¥:0x000040: 02 02 22 00 00 00

After Execution: MUL

‘ Address: [:0040

L:0x000020: 00 00 00 oo 00 0o oo
L:0x000030: 00 00 00 oo o0 0o oo
L:0x000040: 02 02 ZZ2 44 00 00 OO

Aim 2 : b) Write an assembly language program to sort an array of n= 6 bytes

of data in Descending order stored from location 9000h. (Use bubble sort

algorithm).

33

Algorithm

1. Store the elements of the array from the address 9000h

2. Initialize a pass counter with array size-1 count (for number of passes).

3. Load compare counter with pass counter contents & initialize DPTR to

point to the start address of the array (here 9000h).

4. Store the current and the next array elements pointed by DPTR in registers

B and r2 respectively.

5. Subtract the next element from the current element.

6. If the carry flag is set (for ascending order) then exchange the 2 numbers
in the array.

7. Decrement the compare counter and repeat through step 4 until the

counter becomes O.

8. Decrement the pass counter and repeat through step 3 until the counter

becomes O.

Program:

Label

Mnemonic/Operands

Comments

L1:

L2:

NOEXCHG:

HERE:

ORG 0000H
SJMP 30H

ORG 30H

MOV RO,#05
MOV DPTR,#9000h
MOV A,RO

MOV R1,A
MOVX A,@DPTR
MOV B, A

INC DPTR
MOVX A, @DPTR
CLR C

MOV R2, A
SUBB A, B

JC NOEXCHG
MOV A,B

MOVX @DPTR,A
DEC DPL

MOV A,R2
MOVX @DPTR,A
INC DPTR

DJNZ R1,L2
DJNZ RO,L1
SJMP HERE
END

34

RESULT:

Before Execution: Unsorted Array at 9000h

Address: |H;E||:||:||:|h

PO O0x00%000: 12 34 08 FA 0a 10 00 OO0
Po:0x00%00&: 00 OO 00O OO OO OO0 00 oo

After Execution: Sorted Array (Descending order) at 9000h

Address: |:-::E|I:IEIEIh

:0x009000: FA 34 12 10 0A 08 00 00
X 0x00%900A: 00 OO OO OO0 0O OO0 0O 0o

Results / Conclusion :
The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:
1.

2
3.
4

Remarks:

> b

Probable viva questions:
1.

2
3.
4

35

References:

> b

Signature of staff incharge with date:

36

| Experiment No. : 3 Date: [/ /

PROGRAM ILLUSTRATING BIT MANIPULATIONS
(Bit manipulation, Boolean & Logical Instructions programs)

Aim 1 : a) Assembly Program Illustrating Logical Instructions (Byte Level)

3 eight bit numbers X, NUM1 & NUM?2 are stored in internal data RAM
locations 20h, 21h & 22H respectively.

Write an ALP to compute the following:
IF X=0; THEN NUM1 (AND) NUM2,

IF X=1; THEN NUM1 (OR) NUM2,

IF X=2; THEN NUM1 (XOR) NUM2,
ELSE RES =00,

STORE RES AT 23H LOCATION

Algorithm:
1. Point to the data RAM register 20h and store the condition x.
2. Point to 21h and 22h and move the first number to A register.
3. Compare the contents of r1 and perform the operations accordingly.
4. The result will be stored in 23H register.
Program:
Label Mnemonic/Operands Comments
ORG 0000H
SJMP 30H
ORG 30H
MOV A, 20h
MOV R1, A
MOV A, 21H
CJNE R1,#0,CKOR
ANL A, 22H
SJMP END1
CKOR: | CINE R1,#01,CKXOR
ORL A, 22H
SJMP END1
CKXOR: | CUNE R1,#02,0THER
XRL A, 22H
SJMP END1
OTHER: | CLR A
END1: | MOV 23H, A
HERE: | SOMP HERE
END

37

RESULT:

1) Before Execution: D: 020H =00, 21=0f, 22 = 12
After Execution D: 023H = 02

2) Before Execution: D: 020H =01, 21=0f, 22 = 12
After Execution D: 023H = 1F

3) Before Execution: D: 020H =02, 21=0f, 22 = 12
After Execution D: 023H = 1D

4) Before Execution: D: 020H =34, 21=0f, 22 = 12
After Execution D: 023H = 00

Aim 2 : b) 3 eight bit numbers X, NUM1 & NUM?2 are stored in internal data
RAM Locations 20h, 21h & 22H respectively.

Write an ALP to compute the following:

IF X=0; THEN LSB OF NUM1 (AND) LSB OF NUM2,

IF X=1; THEN MSB OF NUM1 (OR) MSB OF NUM2,

IF X=2; THEN COMPLEMENT MSB OF NUM1

STORE THE BIT RESULT IN RES,

WHERE RES IS MSB OF 23H LOCATIONS

Algorithm:

—

. Move the condition X (from 20h location) into RO register.

2. If X=0; then move LSB bit of 21h to carry flag and ‘AND’ Carry flag with
LSB bit of 22h. Go to step5

3. If X=1; then move MSB bit of 21h to carry flag and ‘OR’ Carry flag with
MSB bit of 22h. Go to stepS

4. If X=0; then complement MSB bit of 21h and move it to carry flag. Go to
stepS

5. Store Carry flag at MSB bit of 23h location.

38

Program:

Label

Mnemonic/Operands

Comments

CKl1:

CK2:

CKa3:
LAST:
HERE:

ORG 0000H
SJMP 30H

ORG 30H

MOV R0,20H
CJNE RO,#0,CK1
MOV C, 08H

ANL C, 10H
SJMP LAST

CJNE RO, #1, CK2
MOV C, OFH

ANL C, 17H

SJMP LAST

CJNE RO,#2,CK3
CPL OFH

MOV C, OFH
SJMP LAST

CLR C

MOV 1FH, C
SJMP HERE

END

RESULT:

20h = 00 => AND OF LSBs =1 (hence 80 in 23h location)

Address: |D -020H

D:0x20:
D:0x27:

oo 21 53 g0 00 00
oo o0 oo 0o oo oo

20h = 01 => OR of MSBs = 0 (hence 00 in 23h location)

20h = 01 =>complement of MSB of 21h location. Hence 21h is changed to Al

Addrezs: |D:|:|2|:|H

D:0=z20:
D:0=z27:

and 23h location has 80h

39

01 21 53 00 00
oo oo oo oo oo

Before Execution

Address: |D:I:|2I:IH

Results / Conclusion :

D:0x27: 00 00 00O 00

After Execution

Addrezs: |D;|:|2|:|H

D:0xz20: 02 A1 53 &0 00 OO
D:0x27: 00 00 OO OO0 0O OO0

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:
1.

2

3.

4
Remarks:

1.

2.
3.
4.

Probable viva questions:

1.

2

3.

4
References:

1.

2.
3.
4.

Signature of staff incharge with date:

40

| Experiment No. : 4 Date: [/ / |

COUNTERS

Aim 1 : a) Write an ALP to implement (display) an eight bit up/down BCD
counters on watch window.

Note: To run this program, after selecting DEBUG session in the main menu
use

View-> Watch& call Stack window, in the Watches select watch 1(or 2) and
press F2 and enter a (for accumulator A)

Algorithm:

1. Move 00 to A register

2. Call the delay subroutine for 1 second (in delay program move FFH to
registers R1, R2 and R3, loop and decrement until 0).

3. Increment A register(add 99h for down counter)

4. Decimal adjust accumulator for the BCD up/down counter.

Program:

Label Mnemonic/Operands Comments

ORG 0000H

SJMP 30H

ORG 30H

MOV a,#00

BACK: | ACALL DELAY

ADD A,#99H

DA A

JNZ BACK
HERE: | SOMP HERE

DELAY: | MOV R1,#35H

DECR1: | MOV R2,#0FFH
DECR: | MOV R3, #0FFH

DJNZ R3,$

DJNZ R2, DECR

DJNZ R1, DECR1

RET

END

RESULT: Accumulator A is incremented in BCD from 00, 01, 02...09, 10,
11,...99.

41

Name | Value

<lype F2 to edt>

ST ST tocais)\ watch w1 £ Watch #2 A

Aim 2 : b) Write an ALP to implement (display) an eight bit up/down BCD

counters by using timer delay.

Algorithm:

Set up timer0O in mode 2 operation

Load TH1 with 118 to generate an interrupt every 0.05Smsec.

Reset registers a, r1 & r0.

Repeat step 4 continuously

On interrupt; ISR at 000B location goes to step 6

Disable timer0O

Update r1 & rO

Check if 20000 interrupts (=1 sec) over. Yes —increment accumulator a.
Enable timer & return from ISR.

W Nk b=

Program:

Label Mnemonic/Operands Comments
ORG 0000OH
SJMP 30H
ORG 0OBH
SJMP ISR
ORG 30H
MOV A, #00
MOV RO,#00
MOV R1,#00
MOV TMOD, #02H
MOV THO, #118
MOV IE, #82H
SETB TCON.4
HERE: | SIMP HERE
ISR: | CLR TCON.4
INCR1
CJNE R1,#100,SKIP
MOV R1,#00
INC RO
CJNE RO,#200,SKIP
MOV RO,#00H
INC A
SKIP: | SETB TCON.4
RETI
END

42

RESULT : Accumulator A is incremented in hex from 00, 01,02...09,0A, 0B,
..., 0F, 10, 11, ...FF every 1 second (for 33MHz clock setting & every 3 seconds
for 11.0592MHz)

TMOD FUNCTION REGISTER
7 8 5 4 3 2 1 0
Gate |CiT M1 MO Gate |C/IT M1 MO
[TIMER1 I TIMERD]

Bit | Symbol | Function

7/3 | Gate OR gate enahle bit which
controls RUN/STOP of timer 1/0

62 | C/ Setto 1-by program to make
timer 1/0 act as a counter by
counting pulses from external
input pins 3.5(T1) or 3.4(T0)

51 M1 Timer/Counter operating mode
select hit 1

4/0 | MO Timer/Counter operating mode
select bit 0

M1 (MO | MODE

0 0 0-13 bit timer

0 1 1-16 bit timer

1 0 2-8-hit
reloadable timer
1 1 3-timer0-2-8hit
timers:

timer1 Stop

TCON Function Register

7 6 5 4 3 2 1 0
TF1 | TR1 | TFO | TRO | IE1 | IT1 | IEO | ITO

Interrupt | Address(Hex)
IEO 0003
TFO 000B
IE1 0013
TF1 001B
Serial 0023

43

Bit Symbol | Function
7 TF1 Timer 1 overflow flag
. V&l Timer 1 run control bit
5 TFO Timer 0 overflow flag
4 TRO Timer 0 run control bit
3 IE1 External interrupt 1edge flag
2 I External interrupt 1 signal type
control hit
IED External interrupt 0 edge flag
0 ITO External interrupt 0 signal type
control bit

To get 1sec delay

1/0.05msec = 200*100 in the ISR
(Assuming 33 MHz crystal frequency.
For 11 MHz, the calculations change).
Timer delay = 12 * (257-delay)/frequency
Timer delay=0.05 msec
Delay = 256-((timer delay * frequency)/12)
= 256-(0.05*10 -3 * 33*106)/12
= 256-137.5
= 118.5 //loaded in THO

Results / Conclusion :
The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

Applications:
1.

2
3.
4

44

Remarks:

> b

Probable viva questions:
1.

2
3.
4

References:
1.

2
3.
4

Signature of staff incharge with date:

45

| Experiment No. : 5 Date: [/ /

CONVERSION PROGRAMS

Aim 1 : a) Write an ALP to implement decimal to hex conversion.

Algorithm:

1. Move the decimal data to be converted from external memory 40h to
accumulator.

2. AND A reg with 0fOh and obtain the upper MSB of the decimal digit and
swap the LSB and MSB of accumulator to bring the same to units place.

3. Move Oah to B register and multiply with A reg to convert to hex value,
store the converted tens value in rl

4. Get the LSB of the decimal number and add to the converted tens value

5. Point to the next memory location and store the result (hexadecimal).

Program:

Label Mnemonic/Operands Comments
ORG 0000H
SJMP 30H

ORG 30H

MOV DPTR,#40H
MOVX A, @DPTR
ANL A, #OFOH
SWAP A

MOV B,#0AH
MUL AB

MOV R1,a
MOVX A,@DPTR
ANL A,#OFH
ADD A,R1

INC DPTR

MOVX @DPTR,A
HERE: | SOMP HERE
END

RESULT: Before execution- X: 0040H = 45 (Decimal/BCD)
After Execution: X: 0041h = 2D (hex value)

Aim 2 : b) Write an ALP to implement hex to decimal conversion

46

Algorithm:
1. Move the hex data to be converted to accumulator.

Move 10 to B register and divide with A reg to convert to ASCII value
Store the converted LSB value in r7

Repeat the step 2 to obtain the converted MSB value

a bk LD

Store the same in r6

Program:

Label Mnemonic/Operands Comments
ORG 0000H
SJMP 30h

ORG 30h

MOV DPTR,#9000H
MOVX A,@DPTR
MOV B,#10

DIV AB

INC DPTR

XCH A,B

MOVX @DPTR, A
XCH A,B

MOV B,#10

DIV AB

INC DPTR

XCH A,B

MOVX @DPTR, A
XCH A,B

INC DPTR
MOVX @DPTR, A
HERE: | SOMP HERE
END

RESULT: 9000H - FF (HEX NUMBER)
9001 to 9003 — unpacked BCD number (decimal) - 5, 5, 2
(i.e., 255 stored Lower digit first)

Address: [X:SOUUH

X :0x009000: FF 0S5 0S 02 00 0O
X:0x009006: 00O OO OO OO 0O OO

Results / Conclusion :

The programming experiment was conducted successfully, the programming

o/p is observed & the results are neatly tabulated.

47

Applications:
1.

2
3.
4

Remarks:

s> LN

Probable viva questions:
1.

2

3.

4
References:
1.

2

3.

4

Signature of staff incharge with date:

48

| Experiment No. : 6

Date: [/ |/

SERIAL DATA TRANSMISSION with variable baud rate-8051

Aim : Write a program illustrating serial ASCII data transmission (data-

BHARAT). Conduct an experiment to configure 8051 microcontroller to

transmit characters (BHARAT) to a PC using the serial port and display on

the serial window.

Algorithm:

1. Initialize timer 1 to operate in mode 2 by loading TMOD register.
2. load TH1 with -3 to obtain 9600 baud.
3. Initialize the asynchronous serial communication transmission (SCON)

register.

4. Start timerl to generate the baud rate clock.
5. Transmit the characters “BHARAT” by writing into the SBUF register and
waiting for the TI flag.

Program:

Label

Mnemonic/Operands

Comments

AGAIN:

BACK:
TRANS:
HERE:

MYDATA:

ORG 0000H

SJMP 30H

ORG 30H

MOV RO,#05H
MOV DPTR, #300H
MOV TMOD, #20H
MOV TH1, #-3
MOV SCON, #50H
SETB TR1

CLR A

MOVC A, @A+DPTR
JZ BACK

ACALL TRANS

INC DPTR

SJMP AGAIN
SJMP BACK

MOV SBUF, A

JNB TI, HERE

CLR TI
RET

ORG 300H
DB “BHARAT”,0
END

/ /-3=FD loaded into TH1 for 9600 baud,

11.0592MHz.

49

Note: To use result of this program, after selecting DEBUG session in the
main menu use View-> serial window #1. On running & halting the

program, the data is seen in the serial window.

RESULT: “BHARAT” is printed on the serial window each time the program is

executed.

Theory: In serial transmission as opposed to parallel transmission, one bit
at a time is transmitted. In serial asynchronous transmission, the data
consists of a Start bit (high), followed by 8 bits of data to be transmitted and
finally the stop bit. The byte character to be transmitted is written into the
SBUF register. It transmits the start bit. The 8-bit character is transferred one
bit at a time. The stop bit is transferred. After the transmission, the TI flag =
1 indicating the completion of transmission. Hence in the subroutine wait
until TI is set. Later clear the TI flag and continue with transmission of the
next byte by writing into the SBUF register. (The program can also be written
in interrupt mode). The speed of the serial transmission is set by the baud
rate which is done with the help of timer 1. (Refer Ayala). Timerl must be

programmed in mode 2 (that is, 8-bit, autos reload).

Baud rate Calculation:

Baud Rate = Crystal freq/ (12*32)
= (11.0592MHz)/(12*32)
= 28800

To get 9600, 28800/ 3 is obtained by loading timer1 with -3 (i.e., FF — 3 = FD)
for further clock division. For 2400 baud rate, 28800/12 => -12 = F4 in TH1.

Results / Conclusion :
The experiment was conducted successfully, the o/p is observed & the results

are neatly tabulated and the conclusions are drawn.

50

Applications:
1.

2
3.
4

Remarks:

s> LN

Probable viva questions:
1.

2

3.

4
References:
1.

2

3.

4

Signature of staff incharge with date:

51

Hardware
Interfacing
Experiments

52

Features of Embedded C :

C is a simple programming language and so very easy to code.
Embedded C has most features of C-language with more stress on
certain bit manipulative instructions.

This feature makes it easy to write program for pC and pP.

Keil is a versatile software with a cross compiler that will convert the C
program to assembly language and thus the program can be executed
on the desired target (say 8051).

Some of the bit manipulative instructions used are

Symbol Operation
& Bitwise AND
| Bitwise OR
~ Bitwise NOT
>> Shift right
<< Shift left
A Dot operator

53

| Experiment No. : 7 Date: [/ |/ |

Dual DAC Interface to generate different types of waveforms

Aim : a) Implementation of DAC 0808 interface to 8051 to generate square,
triangular, ramp waveforms. Dual DAC Interface to generate

a. Square waveform

b. Triangular Waveform

c. Ramp waveform

d. Sine waveform

8 Dual DAC CRO
_
0] Probe must be
wout connected to
oLl |
5 PO : ———— | Xoutor Yout
1 P1

a). Algorithm for Square wave generation:

Let initial, amplitude of the square wave be 2.5v (7F) and frequency count
100.

Output the values O0Oh (0ff) and 7fh (on) Values through PO.

If amplitude key is pressed then increase the voltage in steps of 0.15v (8).
If the frequency key is pressed increment the count in steps of 50. If the
count exceeds 1000 reset it back to 100.

Every time amplitude and frequency changes output the value thro PO and
note the waveform on CRO.

Theory: Majority of the integrated circuits of DAC use the R/2R method since
it can achieve higher degree of precision. The basic criterion for judging a DAC
is its resolution, which is a function of the binary inputs. The common ones
are 8, 10 and 12 bits. The number of data bit inputs decides the resolution of
the DAC since the number of analog levels is equal to 2n, where n is number
of data nit inputs. Therefore the 8-input DAC such as DAC0800 provides 256
discrete voltage (or current) levels of output.

The digital inputs are converted to current (lout) and by connecting resistor or
op-amp to the Iout pin, we convert the result into voltage. The total current
provided by the Iout pin is a function of the binary numbers at the DO-D7
inputs of the DAC and the reference current (lr.f), and is as follows:

54

Iout=Iref (D7/2 +D6/3 +D5/8+D4/16 + D3/32+D2/64 + D1/128 + DO/256)
Where DO is the LSB and D7 is the MSB of the inputs, and Iref is the input
current that must be applied to pin 14. The Iref current is generally 2mA.
Some DAC also use zener diode (LM336) which overcomes any flu8ctuations
associated with the power supply. If Ief is 2mA then when all inputs are high
the maximum current is 1.99mA.

Driver Circuit Description:

The Dual DAC interface can be used to generate different waveforms using
microcontroller. There are two 8-bit analog to digital converters provided
based on DACO0800. The digital inputs to these DACs are provided through
the Port O and Port 1. The analog output from the DAC is given to operational
amplifier which acts as current to voltage converter and isolator between CRO
circuit and DAC chip. The output of the op-amp is connected to Xout and
Yout points on board from which the waveforms can be observed on CRO. Two
10k Ohm pots are provided for the offset balancing of op-amps. The reference
voltage required for the DAC is obtained from onboard voltage regulator
uA723. The voltage generated by this regulator is about 8V. The output of the
DAC vary from O V to SV corresponding to values between 00 to FF
respectively.

Installation:

» The interface module has a 26-pin connector at one edge of the card which
is connected to Microcontroller board through FRC (Flat Ribbon Cable)
connector.

» External power supply of +12, -12 and GND are connected to points
marked through 4-pin connector provided.

Applications: Sound card, CD players, Digital music players etc...

Program for square wave:

#include <REG51xD2.H>

sbit Amp = P3/3; /* Port line to change amplitude */
sbit Fre = P3/2; /* Port line to change frequency */
void delay (unsigned int x) /* delay routine */
{

for (;x>0;x--);
b
main()

55

unsigned char on = 0x7f,0ff=0x00;
unsigned int fre = 100;

while(1)
{
if(lAmp) /* if user choice is to change amplitude */
{
while(!Amp); /* wait for key release */
on+=0x08; /* Increase the amplitude */

H
if(lFre) /* if user choice is to change frequency */

{

if(fre > 1000) /* if frequency exceeds 1000 reset to default */

fre = 100;

while(!Fre); /* wait for key release */

fre += 50;

} /* Increase the frequency */
PO=on; /* write amplitude to port */
Pl=on;
delay(fre);

PO = off; /* clear port */
P1 = off;
delay(fre);
H
H

Simulation output:

Logic Analyzer

IS&W]1'43667 Min Time Max Time Gid | Zoom | Min/Max Update Screen 'Tir:lnsﬁrlgn _Jumpto [T Signalinfo [T Ampltude ™
[Save...]|[33451065 [3616492s [0.5ms |[In J[Out] Al|[Auto][Undo]|[Stop || Gear ||[Prev][Next]| [Code |[Trace]| ™ Show Cycles I™ Cursor
255

(] T]

361.6405s 3616453

b) Algorithm for Triangular wave generation:

e Output the initial value 00 through PO.

L x |

3616495

e Increment it in steps of 1 until a count value of FFh (5V) is reached. Every

time repeat step 1.

e Decrement it in steps of 1 until a zero value is reached and repeat step 1.

56

Program for triangular wave:

#include <REG51xD2.H>

main()
{
unsigned char i=0,slope=1;
PO = 0x00; /* PO as Output port */
while(1)
{
for(i=0;i<0xfe;) /* Generate ON pulse */
{
P1 =1i;
PO =i;
i=i+slope;
}
for(i=0xfe;i>0x00;) /* Generate OFF pulse */
{
PO = i;
P1 =i,
i=i-slope;
}
}

Simulation output:

Logic Analyzer O |

MnTine Max Time Min/Max _ |Update Screen| Transtion | Jumpto | Signallnfo [~ Ampitude ™

53486025 | 56828495 1ms -@@ --[:}- e -- e o Ccdes I Clrnr
255 .)

PO

56655215 ' ‘ ' sEHss ‘ ' 5683521
A 1

57

c) Algorithm for Ramp wave generation

e Output the initial value 00 through PO.

e Increment it in steps of 1 until a count value of FFh (5V) is reached. Every
time repeat step 1.

e Repeat step 1 & 2 continuously.

Program for Ramp waveform

#include <REG51xD2.H>
main ()
{
Unsigned char i=0,slope=1,rising=1;
PO = 0x00; /* PO as Output port */
while (1)
{
If(rising==1)
{
for(i=0;i<0xfe;) /* Generate ON pulse */
{
P1 =i,
PO = i;
i=i+slope;

else

for(i=0xfe;i>0x00;) /* Generate OFF pulse */
{

PO =i;

P1 =1i;

i=i-slope;

58

Simulation output:

Logic Amalyzer s D
Setp || Laad M Time Max Time Grd Toon Mo/Max Updete Scomen Transtion bao to ™ Sgral vdo Arrpitude I~
Save 9790002s 30125172 [05ma N Oul A Ao | Ungol © Siep | Cear | Prev Net | [Coce | Toace ! T Show Orctes T Clrser
55
A N A A A
4 /
./ J J /
) / / / /
/ 4
/‘ /"
v v v v
0
0IesSte 012101 s 1012551
‘| o B>
|

Results / Conclusion :
The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:
1.

2

3.

4

Remarks:

1.

2

3.

4

Probable viva questions:
1.

2
3.
4

59

References:

> b

Signature of staff incharge with date:

60

| Experiment No. : 8 Date: [/ /

STEPPER MOTOR INTERFACE TO 8051

Aim : Perform an experiment to interface a stepper motor to the 8051
microcontroller.

Description

e Unlike DC motor Stepper motor rotates in steps.
e Programmatically following parameters can be controlled
o Angle of rotation
o Direction of rotation
o Speed of rotation (RPM)
e Stepper motor has 4 coils which forms the stator and a central rotor.
e Rotation depends on excitation of stator coils.

step coil A coil B coil C coil D

1 0] 0] 0] 1
2 1 0 0 0]
3 0] 1 0] 0]
4 0] 0] 0] 1

Anyone of these values forms the initial value. To get 3600 revolution 200
steps are required. Step angle= 360° /200 = 1.8° (difference between 2 teeth).

Algorithm for Stepper Motor

Configure PO as output.
Apply the initial excitation of 11 to motor coils through PO.
For clockwise motion -Rotate right once the excitation and repeat step 2.

For anticlockwise motion -Rotate left once the excitation and repeat step
2.

PS

ﬂ Ps

8051uC ﬂ
—> ?thepper Stepper
£0 otor — Motor
FRC 26pin Interface
Cable

61

DE[(]

o= » [0 2=/ 6>

Theory:

A stepper motor is a device that translates electrical pulses into mechanical
movement. The stepper motor shaft moves in a fixed repeatable increment,
which allows precise angle control. This repeatable fixed movement is possible
as a result of basic magnetic theory where poles of the same polarity repel
and opposite polarity attract. The direction of the rotation is dictated by the
stator poles. The stator poles are determined by the current sent through the
wire coils. As the direction of the current is changed, polarity is also changed

causing the reverse motion of the rotor.

Step angle : This depends on the number of teeth on the stator and the rotor.
Step angle is the minimum degree of rotation associated with the single step.

We are using a stepper motor with 50 teeth on rotor and 4 on stator, hence
the step angle is calculated as

Step Angle = 360/ (No. of teeth on rotor x No of teeth on Stator)
=360/ (50 x 4)
=1.8

Therefore steps per revolution are 200.
Steps per second and rpm relation.
Steps/sec = (rpm x Steps per revolution) / 60

Drive sequences:

4 step sequence: 1001,1100,0110,0011
8 Step sequence: 1001, 1000,1100,0100,0110,0010,0011,0001
Wave drive 4 step sequence: 1000,0100,0010,0001
Types of stepper motor:
» Permanent magnet (PM)
» Variable reluctance (VR)

62

Comparison of different types (based on phase) of stepper motor are :

Parameter Universal | Unipolar Bipolar
Number of connections 8 6 4
Modes All 3 2 (Uni / Bi) | Only Bi
Extra circuitry - - H-bridge
Operational current Low Low High
Holding torque Low Low High

Construction:

Stepper motors commonly have permanent magnet rotor (also referred as
shaft) surrounded by a stator. Stepper motor have four stator windings that
are paired with the centre tapped common, this type is commonly referred as
four phase or Unipolar stepper motor. The centre tap allows change of the
current direction in each of two coils when winding is grounded thereby
resulting in polarity change of stator. The stepper motor used has total of 6
leads, 4 leads represent 4 stator winding and 2 common for the centre tapped
leads.

Driver Circuit Description:

The stepper motor interface uses 4 transistor pairs (SL100 & 2N3055) in a
Darlington pair configuration. Each Darlington pair is used to excite the
particular winding of the motor connected to 4 pin connector on the interface.
The inputs to these transistors are from the Microcontroller board. Lower
nibble of Port 0 i.e. PO.0, PO.1, P0.2, p0.3 are the four lines brought out of the
26 pin FRC male connector (J7) on the interface module. The freewheeling
diodes across each winding protect transistor from switching transients.

Installation:

» The interface has two 3-pin and one 4pin connectors.

» Plug in 4-pin polarized connector of the motor to interface and the 3-pin
connector of the motor to 3-pin connector of the interface marked as “WHT
BLK”.

» Connect 3-pin female connector of the stepper motor power supply to the
connector of the interface marked as “GND +5/12V”.

» Connect the 26-pin FRC on the interface module to J7 of controller kit.

Applications:

Card reader, dot matrix printers, Hard disk drive (HDD), Floppy disk drive
(FDD), CD/ DVD drive, Clocks to rotate hands etc...

63

/ /Program for stepper motor interface :

#include <REG51xD2.H>
void delay (unsigned int x) /* Delay Routine */
{
for(;x>0;x--);
return;
¥
Main ()
{
unsigned char Val, i;
P0=0x00;
Val = 0x11;
for (i=0;i<4;i++)
{
PO = Val,
Val = Val<<1; /* Val= Val>>1; for clockwise direction*/
delay (500);

}

Simulation output :

Logic Analyzer 1 8
Setup. || Load Mn Tme Max Tme Gud Zoom MeuMax Update Screen Transtion = Jump o [Soraikfe [Anpitude
Save 0e 7%.75886s | Ses | in [Ou] A [Aua]Undo||[Rop | Oesr | [Prev fhext|/[Code TTrace] ™ Show Cycles [~ Curmer
55
PO “ [F
\
- SHI -t - & —
|
i
i
|
’
M67N1R2e 71682, TERIR2s

Results / Conclusion :
The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:
1.

2
3.
4

64

Remarks:

> b

Probable viva questions:

1.

2

3.

4
References:
1.

2

3.

4

Signature of staff incharge with date:

65

| Experiment No. : 9 Date: [/ / |

DC MOTOR INTERFACE TO 8051

Aim : Perform an experiment to interface a DC motor to the 8051
microcontroller.

Algorithm for DC motor interface :

* Configure PO, P1 as output port and P3 as input port.

* Let initially the motor rotate with half speed count 7fh.

o If “INR” button is pressed reduce the count because the speed is inversely
proportional to count.

o If “DEC” button is pressed increase the count.

FS

r
e]

DC Motar
— DC
Fo Interface = Motor
FRC 26pin Card
*.ﬂ.

Cakle

Fig. : Block-diagram of the interfacing of a DC motor to a microcontroller

Theory:

Direct current (DC) motor is another widely used device that translates
electrical to mechanical movement. In DC motor we have only + and — leads.
Connecting from DC voltage source moves the motor in one direction and by
reversing the polarity, the motor will move in opposite direction. DC motors
have two rpms : no load and loaded which will be indicated on data sheet
specifications. The normal voltage rating varies from 1V to 150V and current
rating varies from 25mA to few amperes. The DC motor follows three
important relations shown below.

Rpm = k / load; at constant current
Rpm = k x current; at constant load
Current = k x load; at constant Rpm

where, k is constant of proportionality.

66

DC motor speed can be varied using PWM (Pulse Width Modulation)
technique. By changing the width of the pulse applied to the DC motor the
speed of the motor is varied. Even though the amplitude of the voltage is same
as the width of the ON time of pulse increases speed also increases.

Installation:

e Connect DC motor to Microcontroller board through FRC cable to J7 (26-
Pin connector).
e AC main Power supply is independently connected to DC motor.

Application:

1. CPU fan, Processor cooling fan etc...

Program for DC motor :

#include <REG51xD2.H>
sbit inr= P372; //speed increment switch
sbit dcr= P373; //speed decrement switch

main()
{
unsigned char i=0x80;
PO = 0x7f; /*Run the motor at half speed.*/
while (1)
{
if (linr)
{
while (linr);
if(i>10)
i=i-10; //increase the DC motor speed
}
if(!dcr)
{
while(!dcr);
if(i<0xf0)
i=i+10; //decrease the DC motor speed
}
PO=i;
}

67

Results / Conclusion :
The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:
1.

2
3.
4

Remarks:

s> LN

Probable viva questions:

1.

2

3.

4
References:
1.

2

3.

4

Signature of staff incharge with date:

68

\ Expe

riment No. : 10

Date: [/ |/

ALPHANUMERIC LCD PANEL INTERFACE TO 8051

Aim : Perform an experiment to interface an alphanumeric LCD panel to the

8051 microcontroller.

Theory: A liquid crystal display (LCD) is a thin, flat electronic visual display
that uses the light modulating properties of liquid crystals (LCs).LCD panels
have in built refreshing controller relieving CPU from the task. LCDs are more
energy efficient, and offer safer disposal, than CRTs. Its low electrical power
consumption enables it to be used in battery-powered electronic equipment.
It is an electronically-modulated optical device made up of any number of

pixels filled with liquid crystals and arrayed in front of a light source

(backlight) or reflector to produce images in color or monochrome.

Pin Description:

Pin Symbol |I/O Description
Vs -- | Ground
Vee -- | +5V Power supply
Vee -- | Power supply to control contrast
4 RS [‘0’ to select comman.d register ;
‘1’ to select data register
S R/W I | ‘O’ for write ; ‘1’ for Read
6 E I/O | Enable
7-14 | DBO - DB 7 | I/O | The 8-bit data bus

LCD Command codes:

Hex . <y Hex . cae
Code Instruction description Code Instruction description
01 | Clear display screen OE Display ON, cursor blinking
02 | Return home OF Display ON, cursor blinking
Decrement cursor . s
04 (Shift cursor to left) 10 Shift cursor position to left
06 Increment cursor 14 Shift cursor position to right

(Shift cursor to right)

69

05 | Shift display right 18 i}l}tlft the entire display to
07 | Shift display left 1C Shlft the entire display to
right
08 | Display OFF, cursor OFF 80 liftrﬁiecursor to beginning of
. Force cursor to beginning of
OA | Display OFF, cursor ON CO ond Jine
OC | Display ON, cursor OFF 38 2 lines and 5x7 matrix

Driver Circuit Description :

LCD accepts characters in ASCII format. Character display font in LCD
module is dot matrix i.e. each character in LCD module can be represented
by 7x5 matrix. This module is built over 16x1 LCD in which the display data
RAM address for the first line is from OOH to 14H and for second line it is 29H
to 3CH

LCD module has got an automatic reset which is critically dependent upon
power supply voltage. Voltage has to rise from 0.2V to 5V within 10 to 15 ms
for LCD to reset. Since this is not accurate; it can also be reset during
initialization. To reset 30H has to be sent 3 times with some delay, busy flag
of LCD module is set while LCD is resetting, during this time data can’t be
written on to the LCD.

» Port 2 of microcontroller is connected to DO to D7 pins of LCD module.
» Control signals RS, R/W and E are connected to P3.7, P3.6 and P3.5
respectively.

Program :

#include<reg51xd2.h>

/ /Function prototype declaration

void ledemd (unsigned char value);

void msdelay (unsigned int itime);

void lcddata (unsigned char value);

unsigned int i;

sfr ldata=0XA0; //OxAO is address of Port 2

sbit rs = P377; //rs -> Register Select, 0 - Command Register: 1-Data
Register

sbit rw = P376; //rw -> Read / Write, O — Write : 1- Read
sbit en = P3"5; //en -> Enable

void main()

{

lcdemd(0x38); / /Defines character matrix i.e 7x5

70

}

msdelay(250); / /Delay is introduced as LCD need time to respond
lcdemd(0xOE); / /Display on cursor blinking
msdelay(250);

lcdemd(0x01); / /Clear display
msdelay(250);

lcdemd(0x06); / /Increment cursor
msdelay(250);

lcdemd(0x86);

msdelay(250);

lcddata('E');

msdelay(250);

lcddata('N');

msdelay(250);

lcddata('C');

void ledemd(unsigned char value)

{

}

ldata=value; / /Information bits are copied to Port 2
rs=0; / /Selecting Command register

rw=0; / /Opted for Write operation

en=1;

msdelay(1);

en=0;

return;

void lcddata(unsigned char value)

{

}

ldata=value;

rs=1; / /Selecting Data Register
rw=0;

en=1;

msdelay(1);

en=0;

return;

void msdelay(unsigned int itime)

{

unsigned int i,j;
for(i=0;i<itime;i++)
for(j=0;j<1275;j++);

71

Results / Conclusion :
The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:
1.

2
3.
4

Remarks:

s> LN

Probable viva questions:

1.

2

3.

4
References:
1.

2

3.

4

Signature of staff incharge with date:

72

| Experiment No. : 11 Date: / /

ELEVATOR INTERFACE TO 8051 MICROCONTROLLER

Aim : Perform an experiment to interface an ELEVATOR to the 8051

microcontroller.

Algorithm for elevator interface :

* Read the floor request through input port P1.

» If the current floor and requested floor are the same no change light up
the corresponding LED through PO.

» If the requested floor greater than current moving up of the lift is
indicated by glowing of LED’s from current floor to the requested.

» If the requested floor lesser than current moving down of the lift is

indicated by glowing of LED’s from current floor to the requested.

Fs

u 5
S051HC u

Elevator

PO (— interface

FRC 26pin

Cahle

Fig. : Block diagram of an elevator interface to the microcontroller

NOTE:
e All active low Signals.
e Also there are two types of LEDS here.

e One is Floor LED which is controlled by Flip-Flop in turn controlled by
Port O higher 4 bits.
e Totally there are 4 Floor LEDs (F10 F11 F12 FI3).

73

Eil°
T L [T
22 PAIL 14 B
19 PAD 13 C

20 12 D
25

16

(1noY 1¥0d

T R

7442

F]
e |K4
R R . PRp—03
D9 ——w— 1w Q -
220 LT
—ww—*dr—
D8 741574
D7 Iq IKB
.. PRp——02
Dé —MW_M__D% Q CLR i
DS |——ww——
D4 [K2
. PRp——0
D3 —MW—MF-—————M Q cirb i
D2 —ww—iq— i
D1 __M.,.,_H_. _m
_ PRp——aoq
DO s —— w Q ceils 1
gl 2| B 3 M ENENES
|13 l4|ll 12| 17 |18 |15 |16
PORT B (IN) PORT A(QUT)

One more type of LED’s are Small LED’s on left side of diagram. They are just

intermediate LEDs which are made to glow as the elevator moves from one
floor to another. These LEDS are controlled by ABCD which acts as a decoder.
ABCD= 0000 means Small LED O for DO

= 0001 means Small LED 1 for D1

= 1001 means Small LED 9 for D9

Flip flops are cleared to make Floor LEDs stop glowing.

Why the Oxff, 0x00, 0x03, Oxff, 0x06, Oxff, Oxff, Oxff, 0x09 in Flr array ????

0x00-0th floor; 0x03-1st floor; 0x06 2nd floor; 0x09 3rd floor; all other filled
with ff just to make it 9 byte array. Oxff do not represent anything.

Similarly for FClr array

Port O :
Flipflop 3rd Flipflop 2nd Flipflop 1st | Flipflop Oth
D C B A
floor clear floor clear floor clear floor clear
Port 1
FloorLed | FloorLed | FloorLed | FloorLed
3rd floor | 2nd floor | 1st floor | Oth floor
control control control control

74

Theory:

This interface simulates the control and operation of an elevator. Four floors
are assumed and for each floor a key and a corresponding LED indicator are
provided to serve as request button and request status indicators. The
elevator itself is represented by a column of ten LEDs. The motion of elevator
is simulated by turning on successive LEds one at a time. The delay between
turning OFF one LED and turning ON the next LED indicates speed of
elevator. The request status information is read through lower nibble of Port1

and elevator motion control is done through PortO.

Driver Circuit Description:

The interface has 4 keys, marked O, 1, 2, and 3 representing the request
button at the 4 floors. Pressing of a key, cause a corresponding flip flop to be
set. The output of the Flip flop can be read through lower nibble of Port1 (P1.0,
P1.1, P1.2 and P1.3) also status of these signals is reflected by the set of 4
LEds. The flip flops can be reset (LEDs are cleared) through higher nibble of
PortO (PO.4, PO.5, P0.6 and P0.7). A column of 10 LEds, representing elevator
is controlled through lower nibble of PortO (P0.0, PO.1, P0.2 and P0.3). These
port lines are fed to the input of the decoder 7442 whose outputs are used to
control the ON/OFF status of the LEDs which simulate the motion of the

elevator.

Installation:

» The 26 pin connector is connected to J7 of Microcontroller module through
FRC cable.

» No external power supply is required as the needed power is taken through
FRC cable itself.

75

Program for Elevator

#include <REGS1F.H>
void delay(unsigned int);
main|)
{
unsigned char Flr[9] = {0xff,0x00,0x03,0xff,0x06,0xff,0xff,0xff,0x09};
unsigned char FClr[9] = {Oxff,0x0E0,0x0D3,0xff,0x0B6,0xff, 0xff,0xff,0x79};
unsigned char ReqFlr,CurFlr = 0x01,i,j;
PO = 0x00;
PO = 0x0f£0;
while(1)
{
P1 = 0xOf;
ReqFlr = P1 | 0x0f0;
while(ReqFlr == 0xOff)
ReqFlr = P1 | 0x0fO; /* Read Request Floor from P1 */
ReqFlr = ~ReqFlr;

if(CurFlr == ReqFlr) /* If Request floor is equal to Current
Floor */
{
PO = FClr[CurFlr]; /* Clear Floor Indicator */
continue;
} /* Go up to read again */
else if(CurFlr > ReqFlr) /* If Current floor is > request floor */
{
i = Flr[CurFlr] - Flr[ReqFlr]; /* Get the no of floors to
travel */
j = Flr[CurFlr];
for(;i>0;i--) /*Move the indicator down */
{
delay(25000);
}
}
else /* If Current floor is < request floor */
{

i = Flr[ReqFlr] - Flr[CurFlr]; /* Get the no of floors to travel */
j = FIr[CurFlr];

for(;i>0;i--) /* Move the indicator Up */
{
PO = 0x010 | j;
jtt;
delay(25000);
}
}
CurFlr = ReqFlr; /* Update Current floor */
PO = FClr[CurFlr]; /* Clear the indicator */

h
}

76

void delay(unsigned int x)

{

for(;x>0;x--);

b

Results / Conclusion :
The programming experiment was conducted successfully, the o/p is

observed & the results are neatly tabulated, conclusions are drawn.

Applications:
1.

2
3.
4

Remarks:

nalR N o

Probable viva questions:
1.

2
3.
4

References:

1.
2
3.
4
Signature of staff incharge with date:

77

[1].

[2].

3].

[4].

[5].

[6].

[7]-

[8].

MICROCONTROLLER LABORATORY (ECL48)

PROBABLE /SUGGESTED QUESTION BANK FOR LAB EXAM

Data Transfer Programs — 8051 : Write an assembly language program
to transfer n = 10 bytes of data from location 8035h to location 8050h
(without overlap).

Data Transfer Programs — 8051 : Write an assembly language program
to exchange n = 5 bytes of data at Location 0027h and at location
0041h.

Arithmetic operation : Write an ALP to perform the following: If x = O-
perform w + v;

Else if x = 1-perform w - v;

Else if x = 2-perform w * v;

Else if x = 3-perform w / v, where w & v are eight bit numbers.

Arithmetic operation : Write an assembly language program to sort an
array of n= 6 bytes of data in Descending order stored from location
9000h. (Use bubble sort algorithm).

Assembly Program Illustrating Logical Instructions (Byte Level) : 3
eight bit numbers X, NUM1 & NUM2 are stored in internal data RAM
locations 20h, 21h & 22H respectively. Write an ALP to compute the
following:

IF X=0; THEN NUM1 (AND) NUM2,

IF X=1; THEN NUM1 (OR) NUM2,

IF X=2; THEN NUM1 (XOR) NUM2,

ELSE RES =00,

STORE RES AT 23H LOCATION

Assembly Program Illustrating Logical Instructions (Byte Level) : 3
eight bit numbers X, NUM1 & NUM2 are stored in internal data RAM
Locations 20h, 21h & 22H respectively.

Write an ALP to compute the following:

IF X=0; THEN LSB OF NUM1 (AND) LSB OF NUM2,

IF X=1; THEN MSB OF NUM1 (OR) MSB OF NUM2,

IF X=2; THEN COMPLEMENT MSB OF NUM1

STORE THE BIT RESULT IN RES,

WHERE RES IS MSB OF 23H LOCATIONS

Counters program : Write an ALP to implement (display) an eight bit
up/down BCD counters on watch window.

Counters program : Write an ALP to implement (display) an eight bit
up/down BCD counters by using timer delay.

78

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

Conversion program : Write an ALP to implement decimal to hex
conversion.

Conversion program : Write an ALP to implement hex to decimal
conversion.

Serial data transmission with variable baud rate — 8051 : Write a
program illustrating serial ASCII data transmission (data-BHARAT).
Conduct an experiment to configure 8051 microcontroller to transmit
characters (BHARAT) to a PC using the serial port and display on the
serial window.

Perform an hardware experiment by implementing a DAC 0808
interface to 8051 to generate square waveforms.

Perform an hardware experiment by implementing a DAC 0808
interface to 8051 to generate triangular waveforms.

Perform an hardware experiment by implementing a DAC 0808
interface to 8051 to generate ramp waveforms.

Perform an hardware experiment to interface a stepper motor to the
8051 microcontroller.

Perform an hardware experiment to interface a DC motor to the 8051
microcontroller.

Perform an hardware experiment to interface an alphanumeric LCD
panel to the 8051 microcontroller.

Perform an hardware experiment to interface an ELEVATOR to the
8051 microcontroller.

79

Arithmetic

FMNEMONIC

ADD ARr
ARD A add
ADD A@Rp
ADD A #n
ADDC A Rr
ADDC A add
ADDC A @Rp
ADDC A #n
DA A

DEC A

DEC Rr

DEC add
DEC @Rp
Qv AB

INC A

INC Rr

INC ad
INC e Rp
iMC DPT
MUL AB
SUBE & Fr
SUBB A,add
SUBE ArRp
SUBBE A ¥n

Logic
MNEMONIC

ANL A Rr
ANL A add
ANL A @ Rp
ANL A, #n
ANL add, A
ANL add, #n
ORL ARr
ORL A add
ORL A @Rp
ORL A, #n
ORL add,A
ORIl add,#n
XRL ARr
XRL A,add
XRL A (@ Rp
XRL A, #n
XRL add,A
XRL add,#n
CLR A

CPL A

NOP

RL A

RLC A

RR A

RRC A
SWAP A

DESCRIFTION

A+Rr— A

A+ (add) = A
A+ (Rp) — A
At —e A
A+Ri+C — A
A+{add)+C — A
A+(Rp)HC — A
A+n+C — A
Abin — Adec
A1 - B

Rr—1 — Rr
(add)=1 — {add}
{Rp)—1 — {Rp}
AJB — AB

At — A

Rr+1 — Rr
(add)+ 1 — {add)
(Rpd+ 1 = (Rp)
DPFTR+1 — DFIR
AxE — AR
A—Rr—C — A
A—={add}=C =4
A—(Rp}—C == A
A-n-C — A

DESCRIPTION

A ANDRr — A

A AND (add) — A

A AND (Rp) — A
AAND n— A

{add) AND A —» (add)
(add) AND n — {add)
AQORRr— A

A OR (add) — A
AOR(Rp)— A
AORn-» A

(add) OR A — (add)
(add) OR n — (add)
AXORRr— A

A XOR (add) — A

A XOR (Rp) — A

A XOR N~ A

(add) XOR A — (add)
(add) XOR n —» (add)
00— A

A—-A

PC+1— PC

AQ—=AT+AB. «—Al«AD

CeAT+AB, «—AQ«-C

AD A —A6. . —+A1—AQ

C—A7—AG. —+A0—C
Alsn <> Amsn

80

BYTES

Prod =t Pad ek ot o ok P b meh ot e Pb o b R = P = R e Rd —

BYTES

-, ik et omd N D) A DD e W NN e N e WNN N

CYCLES FLAGS

. Ov AC
C Ov AC
C OV AC
C OV AaC
C OV AC
C Ov AC
Cov AL
C OV AC
C

0av

oov

C OV AC
C OV AC
COV AC
C OV AC

T - . e

CYCLES FLAGS

— o il d b o ot ot N b h ot o b N e i R ok ek e et s

Data Moves

MNEMONIC
MOV A Rr

MOV A add
MOV A, @Rp
MOV A, #n
MOV Rr,A

MOV Rr,add
MOV Rr,#a
MOV add A
MOV add,Rr
MOV add1,add2
MOV add,@Rp
MOV add, #n
MOV @Rp,A
MOV @Rp,add
MOV @Rp,#n
MOV DPIR,#nn
MOVC A, @A+ DPTR
MOVC A @A+ PC
MOVX A, @DPTR
MOVX A, @Rp
MOVX @Rp,A
MOVX @DPTR,A
POP add

PUSH add

XCH A Rr

XCH A add

XCH A, @Rp
XCHD A.@Rp

Calls and Jumps

MNEMONIC

ACALL sadd
CJINE A add,radd
CJNE A, #n,radd
CJINE Rr,#n,radd
CINE @Rp,#n,radd
DINZ Rr,radd
DINZ add,radd
LCALL ladd
AJMP sadd
LIMP ladd

SIMP radd

IJMP @A+ DPTR
JC radd

INC radd

JB b,radd

JNB b,radd

JBC b,radd

JZ radd

INZ radd

RET

RETI

DESCRIPTION
Rr— A

{add) — A

(Rp) -+ A

n— A

A —+ Rr

(add) — Rr
n—» Rr

A — (add)

Rr — (add)
(add2) — (add1)
(Rp) — (add)

n — (add)

A — (Rp)

(add) — (Rp)

n - (Rp)

nn — DPTR
(A4 DPTR) — A
(A+PC) — A
(DPTR)N — A
(Rp)/\ - A

A — (Rp}*

A - (DPTR)A
(SP) — (add)
(add) — (SP)
A« Rr

A & (add)

A «> (Rp)

Alsn «» (Rplisn

DESCRIPTION

PC+ 2 — (SP); sadd — PC
[A<=>(add)): PC+3+radd — PC
[A<>n|: PC+3+radd — PC
[Rr<>n]: PC +3+radd -» PC
[(Rp}<=>n]: PC+3+radd — PC
[Rr—1<>00]: PC+2+radd — PC
[(add)~ 1 <>00]: PC+3+radd — PC
PC+3 — (SP); ladd — PC
sadd — PC

ladd ~— PC

PC+2+radd — PC

DPTR+A — PC

|[C=1]: PC+2+radd —» PC
[C=0]: PC+2+radd — PC
[b=1}: PC+3+radd — PC
[b=0]. PC+3+radd — PC
[b=1): PC+3+radd - PC; 0 — b
[A=00): PC+2+radd — PC
(A=>00]: PC+2+radd — PC
(SP) — PC

(SP) — PC; EI

81

BYTES CYCLES FLAGS

—_r N ot NN - e WINN = WNWNNNNN e N o N -

BYTES

—_ = NN WWWNN =2 NWNWWNWWWwWwN

-t ot A NNNNNNNNN=SN=NNNN S N o vt ot -

CYCLES FLAGS

nnnNnnNn

NNNNNNNNNNNNNNNNNNNNN

Boolean

MNEMONIC DESCRIPTION BYTES CYCLES FLAGS
ANL Cb CAND b - C 2 2 C
ANL C.b CANDD = C 2 2 €
CIRC 00— C 1 1 0
ClRb 0--+b 2 1

cPLC C—C 1 ! C
CPLb b—=b 2 1

ORL C,b CORb-—C 2 2 C
ORL C,b CORb-»C 2 2 C
MOV C.b b—C 2 1 C
MOV b,C C—b 2 2

SETB C 1= C 1 1 1
SETB b 1—=h 2 1
MNEMONIC ACRONYMS

add Address of the internal RAM from Q0h to FFh.

tadd Long address of 16 bits from 0000h to FFFFh,

radd Relative address, a signed number from —128d to +127d.

sadd Short address of 11 bits; compfete address = PC11-PC15 and sadd.

b Addressable bit in internal RAM or a SFR.

C The carry flag.

fsn Least significant nibble.

msn Most significant nibble.

n Any immediate 8 bit number from 00h to FFh.

Rr Any of the eight registers, RO 1o R7 in the selected bank.

Rp Either of the pointing registers RO or R1 in the selected bank.

(

A

()

IF the condition inside the brackets is true, THEN the action listed will occur; £ELSE go to the next
instruction

External memory location.

Contents of the location inside the parentheses,

Note that flags affected by each instruction are shown where appropriate; any operations that affect the PSW
address may also affect the flags.

82

Intel Corporation Mnemonics,
Arranged Alphabetically

MNEMONIC

ACALL addr11
ADD A direct
ADD A @Ri
ADD A, #data
ADD ARn
ADDC A direct
ADDC A, @R:
ADDC A, #data
ADDC ARn
AJMP addr11
ANL A direct
ANL A @Ri

ANL A #data
ANL A.Rn

ANL direct, A
ANL direct, #data
ANL C,bit

ANL CBit

CINE A direct,rel
CINE A, #data,rel
CINE @RI, #data,rel
CJINE Rn,#data,rel
CLR A

CLR bit

CIRC

CPLA

CPL bit

CPL C

DA A

DEC A

DEC direct

DEC @Ri

DEC Rn

DIV AB

DINZ direct rel
DINZ Rn,rel

INC A

INC direct

INC DPTR

INC @Ri

INC Rn

B bit,rel

JBC bit,rel

IC rel

IMP @A+DPTR
INB bit,rel

INC rel

INZ rel

JZ rel

DESCRIPTION

PC+2 — {SP); addr11 — PC
A+(direct) — A

A+(Ri) — A

A+#data— A

A+Rn— A

A+(direct)+C — A
A+(Ri)+C — A

A+ #data+C — A
A+Rn+C — A

addr11 — PC

A AND (direct) — A

A AND (Ri) = A

A AND #data — A

A AND Rn — A

(direct) AND A — (direct)
(direct) AND #data — (direct)
C AND bit — C

C AND Bit = C
[A<>(direct)): PC+3+rel — PC
[A<>n]; PC+3+rel - PC
[(R)y<>n]: PC+3+rel — PC
(Rn<>n}: PC+34rel — PC
0-» A

0 - bit

0-C

A= A

bit — bit

C—C

Abin -+ Adec

A=l A

(direct)=1 — {direct)

(Ri)=1 — (Ri)

Rn—1 - Rn

A/B — AB

[(direct)=1<>00): PC+3+rel -» PC

[Rn—=1<>00): PC+2+rel — PC
A+l - A

(direct)+ 1 — (direct)

DPTR+1 — DPTR

(Ri)+ 1 — (Ri)

Rn+1—Rn

{b=1]: PC+3+rel - PC

[b=1]): PC+3+rel — PC; 0 — bit

IC=1}: PC+2+rel = PC
DPTR+A — PC

[o=0]: PC4+3+rel — PC
[C=0): PC+2+rel = PC
[A>00]: PC+2+rel = PC
{A=00}: PC4+24rel — PC

83

BYTES CYCLES FLAGS

2 2

2 1 COVAC
1 1 COovAC
2 1 COVAC
1 1 COVAC
2 1 C OV AC
1 1 C OV AC
2 1 C OV AC
1 1 C OV AC
2 2

2 1

1 1

2 1

1 1

2 i

3 2

2 2 C

2 2 C

3 2 C

3 2 C

3 2 C

3 2 C

1 1

2 1

1 1 0

1 1

2 !

1 1 C

1 1 G

1 1

2 1

1 1

1 1

1 4 0oV
3 2

2 2

1 i

2 i

1 2

1 1

i 1

3 2

3 2

2 2

1 2

3 2

2 2

2 2

2 2

MNEMONIC

LCALL addr16
LIMP addr16
MOV A direct
MOV A,@Ri
MOV A, #data
MOV A,Rn

MOV direct, A
MOV direct,direct
MOV direct, @@ Ri
MOV direct, #data
MOV direct,Rn
MOV bit,C

MOV C bit

MOV @Ri,A
MOV @Ri,direct
MOV @R, #data
MOV DPTR, #datalb
MOV Rn A

MOV Rn direct
MOV Rn,#data
MOVC A, @A + DPTR
MOVC A @A +PC
MOVX A @DPTR
MOVX A @Ri
MOVX @DPTR,A
MOVX @Ri,A
NOP

MUL AB

ORL A, direct
ORL A, @R

ORL A, #data
ORL ARn

ORL direct, A
ORL direct, #data
ORL C,bit

ORL C,bit

POP direct

PUSH direct

RET

RETI

RL A

RLC A

RR A

RRC A

SETB bit

SETB C

SIMP rel

SUBB A direct
SUBB A, @Ri
SUBB A #data
SUBB A.Rn

DESCRIPTION

PC+3 —» (SP); addr16 — PC
addr16 — PC

(direct) — A

(Ri) — A

#data — A

Rn— A

A — {direct)

(direct) — (direct)

(Ri) — (direct)

#data — (direct)

Rn —» (direct)

C — bit

bit — C

A — (Ri)

(direct) — (Ri)

#data — (Ri)
#datal6 — DPTR

A - Rn

(direct) — Rn

#data — Rn
(A+DPTR) —» A
(A+PC) — A

(DPTR)N — A

(R)" — A

A — (DPTR)A

A — (R)N

PC+1 - PC

AxB — AB

A OR (direct) — A
AOR(R)— A

A OR #data — A
AORRn-— A

(direct) OR A -» (direct)
{direct) OR #data — (direct)
CORbit—C
CORbit—C

(SP) — (direct)

{direct) — (SP)

{SP) — PC

(SP)— PC.; El

AD<«~AT7 A6 .«~AleAD
Ce=AT—AB, .«—AQ« C
AD-=AT—AB. —A1—-A0
C—AT—AGB. —AD—=C
1 — bt

1=C

PC+2+rel — PC
A~(direct)-C — A
A-(Ri)-C — A
A-#data—-C — A
A—Rn-C -+ A

84

BYTES CYCLES FLAGS

3 2

3 2

2 !

1 1

2 1

1 1

2 i

3 2

2 2

3 2

2 2

2 2

2 1 C
1 1

2 2

2 1

3 2

1 1

2 2

2 1

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1 4 0 ov
2 1

1 1

2 1

1 1

2 1

3 2

2 2 C
2 2 C
2 2

2 2

1 2

1 2

1 1

1 1 C
1 1

1 1 C
2 1

1 1 1
2 2

2 1 COVAC
! 1 C OV AC
2 1 COVAC
! 1 C OV AC

ASCII Codes for Text and Control Characters—No Parity
HEX Character HEX Character HEX Character HEX Character

00 NUL 28 (50 P 78 X
01 SOH 29) 51 Q 79 y
02 STX 2A . 52 R TA z
03 ETX 2B + 53 S 7B {
04 EOT 2C ; 54 T c |
05 ENQ 2D = 55 U D b
06 ACK 2E > 56 Vv 7E -
07 BEL 2F ! 57 w F (del)
08 BS 30 0 58 X

09 HT 31 I 59 Y

0A LF 32 2 SA Z

0B vT 33 3 5B {

oc FF 34 4 5C \

oD CR 35 5 sD]

OE SO 36 6 SE A

OF Si 37 7 S5F —

10 DLE 38 8 60 -

11 DCI 39 9 61 a

12 DC2 3A s 62 b

13 DC3 3B : 63 ¢

14 DC4 3C < 64 d

IS NAK D = 65 ¢

16 SYN 3E > 66 f

17 ETB 3F ? 67 g

18 CAN 40 @ 68 h

19 EM 41 A 69 i

1A SUB 42 B 6A)

1B ESC 43 C 6B k

1C FS 44 D 6C 1

ID GS 45 E 6D m

IE RS 46 F 6E n

IF us 47 G 6F o

20 (space) 48 H 70 P

21 ! 49 ! 71 q

22 “ 4A) 72 r

23 # 4B K 73 $

24 $ 4C L 74 t

25 % 4D M 75 u

26 & 4E N 76 v

27 : 4F 0 77 w

85

NOTES

~ N O & 10 O N~ 0 O

o
o

=
=

o
i

&
-

<
-

)
-

O
-

~
-

o0
i

o\
i

o
«

i
N

o
N

o
o

<
N

N
N

O
q

~
N

0
N

86

Vision of the Institute
To impart quality technical education with a focus on Research and Innovation
emphasizing on Development of Sustainable and Inclusive Technology for the benefit of
society.

Mission of the Institute
To provide an environment that enhances creativity and Innovation in pursuit of
Excellence.
To nurture teamwork in order to transform individuals as responsible leaders and
entrepreneurs.
To train the students to the changing technical scenario and make them to understand the

importance of sustainable and inclusive technologies.

Vision of the ECE Department

To achieve continuous improvement in quality technical education for global competence

with focus on industry, societal needs, research and professional success.

Mission of the ECE Department
Offering quality education in Electronics and Communication Engineering with effective
teaching learning process in multidisciplinary environment.
Training the students to take-up projects in emerging technologies and work with team
spirit.
To imbibe professional ethics, development of skills and research culture for better

placement opportunities.

DEPARTMENT

OF
ELECTRONICS & COMMUNICATION ENGINEERING

	Sem 4 2018-19 MC LM.pdf
	4 Sem MC Cover Page.pdf
	4 Sem MC Lab Manual.pdf

	4 Sem MC Cover Page.pdf

