
Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

MC MODULE2 NOTES

Addressing modes:

There are a number of addressing modes available to the 8051 instruction set, as follows:

 Immediate Addressing

 Register Addressing

 Direct Addressing

 Indirect Addressing

 Indexed Addressing

 Immediate Addressing

o Immediate addressing simply means that the operand (which immediately follows the

instruction op. code) is the data value to be used.

o For example the instruction:

MOV A, #99d

o Moves the value 99 into the accumulator (note this is 99 decimal since we used 99d).

o The # symbol tells the assembler that the immediate addressing mode is to be used.

o Examples: MOV DPTR, #9000H

 Register Addressing

o One of the eight general-registers, R0 to R7, can be specified as the instruction operand.

The assembly language documentation refers to a register generically as Rn.

o An example instruction using register addressing is :

ADD A, R5; Adds register R5 to A (accumulator)

Accumulator R5

o Here the contents of R5 is added to the accumulator.
o One advantage of register addressing is that the instructions tend to be short, single byte

instructions.

o Example: MOV A,R1

MOV R0,A
(MOV R0,R1 IS NOT ALLOWED)

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

 Direct Addressing

o Direct addressing means that the data value is obtained directly from the memory location

specified in the operand.

o For example consider the instruction:

MOV A, 47h

o The instruction reads the data from Internal RAM address 47h and stores this in the

accumulator.

o Direct addressing can be used to access Internal RAM including the SFR registers.

o Examples: MOVA,30H

MOV 30H,A

MOV 30H,#30H

MOV 01H,00H

 Indirect Addressing

o Indirect addressing provides a powerful addressing capability, which needs to be

appreciated.

o An example instruction, which uses indirect addressing, is as follows:

MOV A, @R0

o Note @ symbol indicated that the indirect addressing mode is used.

o R0 contains a value, for example 54h, which is to be used as the address of the internal

RAM location, which contains the operand data.

o Indirect addressing refers to Internal RAM only and cannot be used to refer to SFR registers.

o Note, only R0 or R1 can be used as register data pointers for indirect addressing when using

MOV instructions.

Examples: MOV A, @R0

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

MOV A, @R0

MOV @R0, A

MOVX A, @DPTR

MOVX @DPTR, A

MOVX A, @R0

MOVX @R0, A

 Indexed Addressing

o With indexed addressing a separate register, either the program counter, PC, or the data

pointer DTPR, is used as a base address and the accumulator is used as an offset address.

o The effective address is formed by adding the value from the base address to the value from

the offset address.

o Indexed addressing in the 8051 is used with the JMP or MOVC instructions. Look up tables

are easy to implement with the help of index addressing.

o Consider the example instruction:

MOVC A, @A+DPTR

o MOVC is a move instruction, which moves data from the external code memory space.

o The address operand in this example is formed by adding the content of the DPTR register

to the accumulator value.

o Here the DPTR value is referred to as the base address and the accumulator value us referred

to as the index address.

Types of Instructions:

The assembly level instructions include: data transfer instructions, arithmetic instructions, logical

instructions, program control instructions, and some special instructions such as the rotate

instructions.

 Data Transfer
Many computer operations are concerned with moving data from one location to another. The

8051 uses five different types of instruction to move data:

 MOV

 MOVX

 MOVC

 PUSH

 POP

 XCH

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

1. MOV:

o In the 8051 the MOV instruction is concerned with moving data internally, i.e. between

Internal RAM, SFR registers, general registers etc.

o MOVX and MOVC are used in accessing external memory data.

o The MOV instruction has the following format:

MOV destination <- source

o The instruction copies (copy is a more accurate word than move) data from a defined

source location to a destination location.

o Example MOV instructions are:

MOV R2, #80h ; Move immediate data value 80h to register R2

MOV R4, A ; Copy data from accumulator to register R4

MOV DPTR, #0F22Ch ; Move immediate value F22Ch to the DPTR register

MOV R2, 80h ; Copy data from 80h (Port 0 SFR) to R2

MOV 52h, #52h ; Copy immediate data value 52h to RAM location 52h

MOV 52h, 53h ; Copy data from RAM location 53h to RAM 52h

MOV A,@R0 ; Copy contents of location addressed in R0 to A (indirect addressing)

2. MOVX:

o The 8051 the external memory can be addressed using indirect addressing only.

o The DPTR register is used to hold the address of the external data (since DPTR is a 16-

bit register it can address 64KByte locations: 216 = 64K).

o The 8 bit registers R0 or R1 can also be used for indirect addressing of external memory

but the address range is limited to the lower 256 bytes of memory (28 = 256 bytes).

o The MOVX instruction is used to access the external memory (X indicates eXternal

memory access).

o All external moves must work through the A register (accumulator).

Examples of MOVX instructions are:

MOVX @DPTR, A ; Copy data from A to the address specified in DPTR

MOVX A, @DPTR ; Copy data from address specified in DPTR to A

3. MOVC:
o MOV instructions operate on RAM, which is (normally) a volatile memory. Program

tables often need to be stored in ROM since ROM is nonvolatile memory. The MOVC
instruction is used to read data from the internal code memory (ROM).

o DPTR register is used as the indirect address register.
o The indirect addressing is enhanced to realize an indexed addressing mode where register

A can be used to provide an offset in the address specification.

o All moves must be done through register A.

o The following sequence of instructions provides an example:
MOV DPTR, # 2000h ; Copy the data value 2000h to the DPTR register

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

MOV A, #80h ; Copy the data value 80h to register A

MOVC A, @A+DPTR ; Copy the contents of the address 2080h (2000h + 80h)

; to register A

o Note, for the MOVC the program counter, PC, can also be used to form the address.

4. PUSH and POP:

o PUSH and POP instructions are used with the stack only.

o The SFR register SP contains the current stack address.

o Direct addressing is used as shown in the following examples:

PUSH 4Ch ; Contents of RAM location 4Ch is saved to the stack. SP is incremented.

PUSH 00h ; The content of R0 (which is at 00h in RAM) is saved to the stack and

SP is incremented.

POP 80h ; The data from current SP address is copied to 80h and SP is

decremented.

5. XCH:
o Move instructions copy data from a source location to a destination location, leaving the

source data unaffected. A special XCH (eXCHange) instruction will actually swap the data

between source and destination, effectively changing the source data.

o Immediate addressing may not be used with XCH. XCH instructions must use register A.

o XCHD is a special case of the exchange instruction where just the lower nibbles are

exchanged.

o Examples using the XCH instruction are:

XCH A, R3 ; Exchange bytes between A and R3

XCH A, @R0 ; Exchange bytes between A and RAM location whose address is in R0

XCH A, A0h ; Exchange bytes between A and RAM location A0h (SFR port 2)

 Arithmetic

Some key flags within the PSW, i.e. C, AC, OV, P, are utilized in many of the arithmetic

instructions. The arithmetic instructions can be grouped as follows:

 Addition

 Subtraction

 Increment/decrement

 Multiply/divide

 Decimal adjust

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

1. Addition

o Register A (the accumulator) is used to hold the result of any addition operation.

o Some simple addition examples are:

ADD A, #25h ; Adds the number 25h to A, putting sum in A

ADD A, R3 ; Adds the register R3 value to A, putting sum in A

o The flags in the PSW register are affected by the various addition operations, as follows:

 The C (carry) flag is set to 1 if the addition resulted in a carry out of the accumulator’s

MSB bit, otherwise it is cleared.

 The AC (auxiliary) flag is set to 1 if there is a carry out of bit position 3 of the

accumulator, otherwise it is cleared.

 For signed numbers the OV flag is set to 1 if there is an arithmetic overflow

(described elsewhere in these notes)

o Simple addition is done within the 8051 based on 8 bit numbers, but it is often required to

add 16 bit numbers, or 24 bit numbers etc. This leads to the use of multiple byte (multi-

precision) arithmetic. The least significant bytes are first added, and if a carry results, this

carry is carried over in the addition of the next significant byte etc. This addition process

is done at 8-bit precision steps to achieve multiprecision arithmetic.

o The ADDC instruction is used to include the carry bit in the addition process.

o Example instructions using ADDC are:

ADDC A, #55h ; Add contents of A, the number 55h, the carry bit; and put the sum in A

ADDC A, R4 ; Add the contents of A, the register R4, the carry bit; and put the sum in A.

2. Subtraction
o Computer subtraction can be achieved using 2’s complement arithmetic.

o Most computers also provide instructions to directly subtract signed or unsigned numbers.
o The accumulator, register A, will contain the result (difference) of the subtraction

operation.

o The C (carry) flag is treated as a borrow flag, which is always subtracted from the minuend
during a subtraction operation.

o Some examples of subtraction instructions are:

SUBB A, #55d ; Subtract the number 55 (decimal) and the C flag from A; and put the

result in A.

SUBB A, R6 ; Subtract R6 the C flag from A; and put the result in A.

SUBB A, 58h ; Subtract the number in RAM location 58h and the C flag

From A; and put the result in A.

3. Increment/Decrement

o The increment (INC) instruction has the effect of simply adding a binary 1 to a number
while a decrement (DEC) instruction has the effect of subtracting a binary 1 from a number.

o The increment and decrement instructions can use the addressing modes: direct, indirect
and register.

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

o The flags C, AC, and OV are not affected by the increment or decrement instructions. If a
value of FFh is increment it overflows to 00h. If a value of 00h is decrement it underflows
to FFh.

o The DPTR can overflow from FFFFh to 0000h. The DPTR register cannot be decremented
using a DEC instruction (unfortunately!).

o Some example INC and DEC instructions are as follows:
INC R7 ; Increment register R7

INC A ; Increment A

INC @R1 ; Increment the number which is the content of the address in R1

DEC A ; Decrement register A

DEC 43h ; Decrement the number in RAM address 43h

INC DPTR ; Increment the DPTR register

4. Multiply / Divide

o The 8051 supports 8-bit multiplication and division. This is low precision (8 bit) arithmetic

but is useful for many simple control applications. The arithmetic is relatively fast since

multiplication and division are implemented as single instructions. If better precision, or

indeed, if floating point arithmetic is required then special software routines need to be

written. For the MUL or DIV instructions the A and B registers must be used and only

unsigned numbers are supported.

 Multiplication

The MUL instruction is used as follows (note absence of a comma between the A

and B operands):

MUL AB ; Multiply A by B. The resulting product resides in registers A and B,

the low-order byte is in A and the high order byte is in B.

 Division

The DIV instruction is used as follows:
DIV AB ; A is divided by B. The remainder is put in register B and the

integer part of the quotient is put in register A.

5. Decimal Adjust (Special)

o The 8051 performs all arithmetic in binary numbers (i.e. it does not support BCD

arithmetic).

o If two BCD numbers are added then the result can be adjusted by using the DA, decimal
adjust, instruction:

DA A ; Decimal adjust A following the addition of two BCD numbers.

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

 Logical

Boolean Operations

Most control applications implement control logic using Boolean operators to act on the data.

Most microcomputers provide a set of Boolean instructions that act on byte level data. However,

the 8051 (somewhat uniquely) additionally provides Boolean instruction which can operate on bit

level data.

The following Boolean operations can operate on byte level or bit level data:

 ANL Logical AND

 ORL Logical OR

 CPL Complement (logical NOT)

 XRL Logical XOR (exclusive OR)

 Logical operations at the BYTE level

o The destination address of the operation can be the accumulator (register A), a general
register, or a direct address.

o Status flags are not affected by these logical operations (unless PSW is directly
manipulated).

o Example instructions are:

ANL A, #55h ; AND each bit in A with corresponding bit in number 55h, leaving

the result in A.

ANL 42h, R4 ; AND each bit in RAM location 42h with corresponding bit in R4,

leaving the result in RAM location 42h.

ORL A,@R1 ; OR each bit in A with corresponding bit in the number whose address

is contained in R1 leaving the result in A.

XRL R4, 80h ; XOR each bit in R4 with corresponding bit in RAM location 80h

(port 0), leaving result in A.

CPL R0 ; Complement each bit in R0

 Logical operations at the BIT level

o The C (carry) flag is the destination of most bit level logical operations.
o The carry flag can easily be tested using a branch (jump) instruction to quickly establish

program flow control decisions following a bit level logical operation.

o The following SFR registers only are addressable in bit level operations:

 PSW

 IE

 IP

 TCON

 SCON

o Examples of bit level logical operations are as follows:

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

SETB 2Fh ; Bit 7 of Internal RAM location 25h is set

CLR C ; Clear the carry flag (flag =0)

CPL 20h ; Complement bit 0 of Internal RAM location 24h

MOV C, 87h ; Move to carry flag the bit 7of Port 0 (SFR at 80h)

ANL C,90h ; AND C with the bit 0 of Port 1 (SFR at 90)

ORL C, 91h ; OR C with the bit 1 of Port 1 (SFR at 90)

 Rotate Instructions

o The ability to rotate the A register (accumulator) data is useful to allow examination of
individual bits. The options for such rotation are as follows:

 RL A ; Rotate A one bit to the left. Bit 7 rotates to the bit 0 position

 RLC A ; The Carry flag is used as a ninth bit in the rotation loop

 RR A ; Rotates A to the right (clockwise)

 RRC A ; Rotates to the right and includes the carry bit as the 9th bit.

 Swap = special
o The Swap instruction swaps the accumulator’s high order nibble with the low-order

nibble using the instruction:

SWAP A

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

 Program Control Instructions
o The 8051 supports three kind of jump instructions:

 LJMP
 SJMP

 AJMP

LJMP

o LJMP (long jump) causes the program to branch to a destination address defined by

the 16-bit operand in the jump instruction.

o Because a 16-bit address is used the instruction can cause a jump to any location within

the 64KByte program space (216 = 64K).

o Some example instructions are:

LJMP LABEL_X ; Jump to the specified label

LJMP 0F200h ; Jump to address 0F200h

LJMP @A+DPTR ; Jump to address which is the sum of DPTR and Reg. A

SJMP

o SJMP (short jump) uses a single byte address.

o This address is a signed 8-bit number and allows the program to branch to a distance –

128 bytes back from the current PC address or +127 bytes forward from the current PC

address.

o The address mode used with this form of jumping (or branching) is referred to as relative

addressing, introduced earlier, as the jump is calculated relative to the current PC

address.

AJMP
o This is a special 8051 jump instruction, which allows a jump with a 2KByte address

boundary (a 2K page)

o There is also a generic JMP instruction supported by many 8051 assemblers.
o The assembler will decide which type of jump instruction to use, LJMP, SJMP or AJMP,

so as to choose the most efficient instruction.

 Subroutines and program flow control

o A subroutine is called using the LCALL or the ACALL instruction.

LCALL

o This instruction is used to call a subroutine at a specified address.

o The address is 16 bits long so the call can be made to any location within the 64KByte

memory space.

o When a LCALL instruction is executed the current PC content is automatically pushed

onto the stack of the PC.

Microcontrollers –18EC4DCMIC

Electronics & Communication, DSCE Page No.

o When the program returns from the subroutine the PC contents is returned from the stack

so that the program can resume operation from the point where the LCALL was made.

o The return from subroutine is achieved using the RET instruction, which simply pops the

PC back from the stack.

ACALL

o The ACALL instruction is logically similar to the LCALL but has a limited address range

similar to the AJMP instruction.

o CALL is a generic call instruction supported by many 8051 assemblers.

o The assembler will decide which type of call instruction, LCALL or ACALL, to use so as

to choose the most efficient instruction.

Program control using conditional jumps

o Most 8051 jump instructions use an 8-bit destination address, based on relative addressing,

i.e. addressing within the range –128 to +127 bytes.

o When using a conditional jump instruction the programmer can simply specify a program
label or a full 16-bit address for the conditional jump instruction’s destination.

o The assembler will position the code and work out the correct 8-bit relative address for the
instruction.

o Some example conditional jump instructions are:

JZ LABEL_1 ; Jump to LABEL_1 if accumulator is equal to zero

JNZ LABEL_X ; Jump to LABEL_X if accumulator is not equal to zero

JNC LABEL_Y ; Jump to LABEL_Y if the carry flag is not set

DJNZ R2, LABEL; Decrement R2 and jump to LABEL if the resulting value of

R2 is not zero.

CJNE R1, #55h , LABEL_2 ; Compare the magnitude of R1 and the number 55h

and jump to LABEL_2 if the magnitudes are not

equal.
o Note, jump instructions such as DJNZ and CJNE are very powerful as they carry out a

particular operation (e.g.: decrement, compare) and then make a decision based on the
result of this operation.

